• ASTM E 647 : 1995

    Superseded A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

    Standard Test Method for Measurement of Fatigue Crack Growth Rates

    Available format(s):  Hardcopy, PDF

    Superseded date:  11-11-2014

    Language(s):  English

    Published date:  31-12-2010

    Publisher:  American Society for Testing and Materials

    Add To Cart

    Scope - (Show below) - (Hide below)

    1.1 This test method covers the determination of fatigue crack growth rates from near-threshold to Kmax controlled instability. Results are expressed in terms of the crack-tip stress-intensity factor range ( K), defined by the theory of linear elasticity.

    1.2 Several different test procedures are provided, the optimum test procedure being primarily dependent on the magnitude of the fatigue crack growth rate to be measured.

    1.3 Materials that can be tested by this test method are not limited by thickness or by strength so long as specimens are of sufficient thickness to preclude buckling and of sufficient planar size to remain predominantly elastic during testing.

    1.4 A range of specimen sizes with proportional planar dimensions is provided, but size is variable to be adjusted for yield strength and applied force. Specimen thickness may be varied independent of planar size.

    1.5 The details of the various specimens and test configurations are shown in Annex A1 - Annex A3. Specimen configurations other than those contained in this method may be used provided that well-established stress-intensity factor calibrations are available and that specimens are of sufficient planar size to remain predominantly elastic during testing.

    1.6 Residual stress/crack closure may significantly influence the fatigue crack growth rate data, particularly at low stress-intensity factors and low stress ratios, although such variables are not incorporated into the computation of K.

    1.7 Values stated in SI units are to be regarded as the standard. Values given in parentheses are for information only.

    1.8 This test method is divided into two main parts. The first part gives general information concerning the recommendations and requirements for fatigue crack growth rate testing. The second part is composed of annexes that describe the special requirements for various specimen configurations, special requirements for testing in aqueous environments, and procedures for non-visual crack size determination. In addition, there are appendices that cover techniques for calculating da/dN, determining fatigue crack opening force, and guidelines for measuring the growth of small fatigue cracks. General information and requirements common to all specimen types are listed as follows:

    Section
    Referenced Documents2
    Terminology3
    Summary of Use4
    Significance and Use5
    Apparatus6
    Specimen Configuration, Size, and Preparation7
    Procedure8
    Calculations and Interpretation of Results9
    Report10
    Precision and Bias11
    Special Requirements for Testing in Aqueous EnvironmentsAnnex A4
    Guidelines for Use of Compliance to Determine Crack SizeAnnex A5
    Guidelines for Electric Potential Difference Determination of Crack SizeAnnex A6
    Recommended Data Reduction TechniquesAppendix X1
    Recommended Practice for Determination of Fatigue Crack Opening Force From ComplianceAppendix X2
    Guidelines for Measuring the Growth Rates Of Small Fatigue CracksAppendix X3

    1.9 Special requirements for the various specimen configurations appear in the following order:

    The Compact Tension SpecimenAnnex A1
    The Middle Tension SpecimenAnnex A2
    The Eccentrically-Loaded Single Edge Crack Tension SpecimenAnnex A3

    1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    General Product Information - (Show below) - (Hide below)

    Committee E 08
    Document Type Test Method
    Publisher American Society for Testing and Materials
    Status Superseded
    Superseded By

    Standards Referenced By This Book - (Show below) - (Hide below)

    ASTM G 107 : 1995 : R2020 : EDT 1 Standard Guide for Formats for Collection and Compilation of Corrosion Data for Metals for Computerized Database Input
    ASTM F 3302 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
    ASTM F 3213 : 2017 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion
    ASTM F 3318 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Specification for AlSi10Mg with Powder Bed Fusion – Laser Beam
    ASTM E 1457 : 2019 : EDT 1 Standard Test Method for Measurement of Creep Crack Growth Times in Metals
    ASTM E 2760 : 2019 : EDT 1 Standard Test Method for Creep-Fatigue Crack Growth Testing
    ASTM F 3056 : 2014 : EDT 1 Standard Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion
    ASTM E 1823 : 2020 : REV B Standard Terminology Relating to Fatigue and Fracture Testing
    ASTM F 2565 : 2013 Standard Guide for Extensively Irradiation-Crosslinked Ultra-High Molecular Weight Polyethylene Fabricated Forms for Surgical Implant Applications
    ASTM E 531 : 2013 Standard Practice for Surveillance Testing of High-Temperature Nuclear Component Materials (Withdrawn 2022)
    ASTM E 399 : 2020 : REV A Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
    ASTM F 3122 : 2014 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes
    ASTM E 2899 : 2019 : EDT 1 Standard Test Method for Measurement of Initiation Toughness in Surface Cracks Under Tension and Bending
    ASTM E 2472 : 2012 : R2018 : EDT 1 Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions
    ASTM G 129 : 2000 : R2013 Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking
    ASTM F 3184 : 2016 Standard Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder Bed Fusion
    ASTM F 3055 : 2014 : REV A Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion
    ASTM E 2714 : 2013 : R2020 Standard Test Method for Creep-Fatigue Testing
    ASTM F 2759 : 2019 Standard Guide for Assessment of the Ultra-High Molecular Weight Polyethylene (UHMWPE) Used in Orthopedic and Spinal Devices
    ASTM F 2924 : 2014 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion
    ASTM E 1681 : 2003 : R2020 Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials
    • Access your standards online with a subscription

      Features

      • Simple online access to standards, technical information and regulations
      • Critical updates of standards and customisable alerts and notifications
      • Multi - user online standards collection: secure, flexibile and cost effective