• Shopping Cart
    There are no items in your cart

ASTM C 1044 : 2016 : R2020

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Practice for Using a Guarded-Hot-Plate Apparatus or Thin-Heater Apparatus in the Single-Sided Mode

Available format(s)

Hardcopy , PDF

Superseded date

28-03-2024

Superseded by

ASTM C 1044 : 2024

Language(s)

English

Published date

13-10-2020

€67.30
Excluding VAT

Committee
C 16
DocumentType
Standard Practice
Pages
9
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This practice covers the determination of the steady-state heat flow through the meter section of a specimen when a guarded-hot-plate apparatus or thin-heater apparatus is used in the single-sided mode of operation.

1.2This practice provides a supplemental procedure for use in conjunction with either Test Method C177 or C1114 for testing a single specimen. This practice is limited to only the single-sided mode of operation, and, in all other particulars, the requirements of either Test Method C177 or C1114 apply.

Note 1:Test Methods C177 and C1114 describe the use of the guarded-hot-plate and thin-heater apparatus, respectively, for determining steady-state heat flux and thermal transmission properties of flat-slab specimens. In principle, these methods cover both the double- and single-sided mode of operation, and at present, do not distinguish between the accuracies for the two modes of operation. When appropriate, thermal transmission properties shall be calculated in accordance with Practice C1045.

1.3This practice requires that the cold plates of the apparatus have independent temperature controls. For the single-sided mode of operation, a (single) specimen is placed between the hot plate and the cold plate. Auxiliary thermal insulation, if needed, is placed between the hot plate and the auxiliary cold plate. The auxiliary cold plate and the hot plate are maintained at the same temperature. The heat flow from the meter plate is assumed to flow only through the specimen, so that the thermal transmission properties correspond only to the specimen.

Note 2:The double-sided mode of operation requires similar specimens placed on either side of the hot plate. The cold plates that contact the outer surfaces of these specimens are maintained at the same temperature. The electric power supplied to the meter plate is assumed to result in equal heat flow through the meter section of each specimen, so that the thermal transmission properties correspond to an average for the two specimens.

1.4This practice does not preclude the use of a guarded-hot-plate apparatus in which the auxiliary cold plate is either larger or smaller in lateral dimensions than either the test specimen or the cold plate.

Note 3:Most guarded-hot-plate apparatus are designed for the double-sided mode of operation (1).2 Consequently, the cold plate and the auxiliary cold plate are the same size and the specimen and the auxiliary insulation will have the same lateral dimensions, although the thicknesses need not be the same. Some guarded-hot-plate apparatus, however, are designed specifically for testing only a single specimen that is either larger or smaller in lateral dimensions than the auxiliary insulation or the auxiliary cold plate.

1.5This practice is suitable for use for both low- and high-temperature conditions.

1.6This practice shall not be used when operating an apparatus in a double-sided mode of operation with a known and unknown specimen, that is, with the two cold plates at similar temperatures so that the temperature differences across the known and unknown specimens are similar.

1.7This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.8This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM C 1114 : 2006 : R2019 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus
ASTM C 1045 : 2019 Standard Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
ASTM C 1043 : 2019 Standard Practice for Guarded-Hot-Plate Design Using Circular Line-Heat Sources
ASTM C 1470 : 2020 Standard Guide for Testing the Thermal Properties of Advanced Ceramics

ASTM C 168 : 2019 Standard Terminology Relating to Thermal Insulation
ASTM C 177 : 2019 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
ASTM C 518 : 2002 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
ASTM C 518 : 2017 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
ASTM C 518 : 2021 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
ASTM C 177 : 2019 : EDT 1 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
ASTM C 168 : 2022 Standard Terminology Relating to Thermal Insulation
ASTM C 518 : 1998 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.