ASTM C 1672 : 2007
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
View Superseded by
Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer
Hardcopy , PDF
11-11-2014
English
01-06-2007
Committee |
C 26
|
DocumentType |
Test Method
|
Pages |
10
|
ProductNote |
Reconfirmed 2007
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
SupersededBy |
1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios.
1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes.
1.3 The total evaporation method may lead to biases in minor isotope ratios due to peak tailing from adjacent major isotopes, depending on sample characteristics. The use of an electron multiplier equipped with an energy filter may eliminate or diminish peak tailing effects. Measurement of instrument abundance sensitivity may be used to ensure that such biases are negligible, or may be used to bias correct minor isotope ratios.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM C 1880 : 2019 | Standard Practice for Sampling Gaseous Uranium Hexafluoride using Alumina Pellets |
ASTM C 1817 : 2016 | Standard Test Method for The Determination of the Oxygen to Metal (O/M) Ratio in Sintered Mixed Oxide ((U, Pu)O<inf>2</inf>) Pellets by Gravimetry |
ASTM C 697 : 2016 | Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Plutonium Dioxide Powders and Pellets |
ASTM C 1816 : 2016 | Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis |
ASTM C 1128 : 2018 | Standard Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials |
ASTM C 698 : 2016 | Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Mixed Oxides ((U, Pu)O<inf>2</inf>) |
ASTM C 1832 : 2016 | Standard Test Method for Determination of Uranium Isotopic Composition by the Modified Total Evaporation (MTE) Method Using a Thermal Ionization Mass Spectrometer |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.