ASTM C 1832 : 2023
Current
The latest, up-to-date edition.
Standard Test Method for Determination of Uranium Isotopic Composition by Modified Total Evaporation (MTE) Method Using Thermal Ionization Mass Spectrometer
Hardcopy , PDF
English
27-01-2023
Committee |
C 26
|
DocumentType |
Test Method
|
Pages |
24
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method describes the determination of the isotope amount ratios of uranium material as nitrate solutions by the modified total evaporation (MTE) method using a thermal ionization mass spectrometer (TIMS) instrument.
1.2The analytical performance in the determination of the 235U/238U major isotope amount ratio by MTE is similar to the (“classical”) total evaporation (TE) method as described in C1672. However, in the MTE method, the evaporation process is interrupted on a regular basis to allow measurements and subsequent corrections for background from peak tailing, perform internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, peak centering, and ion source refocusing. Performing these calibrations and corrections on a regular basis during the measurement, improves precision, and significantly reduces uncertainties for the minor isotope amount ratios 234U/238U and 236U/238U as compared to the TE method.
1.3In principle, the MTE method may yield major isotope amount ratios without the need for mass fractionation correction. However, depending on the measurement conditions, small variations are observed between sample turrets. Therefore, a small correction based on measurements of a certified reference material is recommended to improve consistency. The uncertainty around the mass fractionation correction factor usually includes unity.
1.4Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM C 1880 : 2019 | Standard Practice for Sampling Gaseous Uranium Hexafluoride using Alumina Pellets |
ASTM E 321 : 2020 | Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method) |
ASTM C 1636 : 2022 | Standard Guide for Determination of Uranium-232 in Uranium Hexafluoride |
ASTM C 1672 : 2017 | Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer |
ASTM C 1913 : 2021 | Standard Practice for Sampling Gaseous Uranium Hexafluoride Using Zeolite in Single-Use Destructive Assay Sampler |
ASTM C 1871 : 2022 | Standard Test Method for Determination of Uranium Isotopic Composition by the Double Spike Method Using a Thermal Ionization Mass Spectrometer |
ASTM C 833 : 2017 | Standard Specification for Sintered (Uranium-Plutonium) Dioxide Pellets for Light Water Reactors |
ASTM D 1193 : 2024 | Standard Specification for Reagent Water |
ASTM C 859 : 2023 | Standard Terminology Relating to Nuclear Materials |
ASTM E 2586 : 2019 : R2024 | Standard Practice for Calculating and Using Basic Statistics |
ASTM C 859 : 2024 | Standard Terminology Relating to Nuclear Materials |
ASTM C 833 : 2023 | Standard Specification for Sintered (Uranium-Plutonium) Dioxide Pellets for Light Water Reactors |
ASTM C 1128 : 2018 | Standard Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials |
ASTM C 1672 : 2023 | Standard Test Method for Determination of the Uranium, Plutonium or Americium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer |
ASTM C 1625 : 2019 | Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry |
ASTM C 859 : 2022 : REV A | Standard Terminology Relating to Nuclear Materials |
ASTM C 1128 : 2023 | Standard Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials |
ASTM E 2586 : 2019 : EDT 1 | Standard Practice for Calculating and Using Basic Statistics |
ASTM C 1625 : 2024 | Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry |
ASTM D 1193 : 2006 : R2018 | Standard Specification for Reagent Water |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.