ASTM C 1835 : 2016 : R2023
Current
The latest, up-to-date edition.
Standard Classification for Fiber Reinforced Silicon Carbide-Silicon Carbide (SiC-SiC) Composite Structures
Hardcopy , PDF
English
09-06-2023
Committee |
C 28
|
DocumentType |
Standard
|
Pages |
6
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This classification covers silicon carbide-silicon carbide (SiC-SiC) composite structures (flat plates, rectangular bars, round rods, and tubes) manufactured for structural components. The SiC-SiC composites consist of continuous silicon carbide fibers in a silicon carbide matrix produced by four different matrix densification methods.
1.2The classification system provides a means of identifying and organizing different SiC-SiC composites, based on the fiber type, architecture class, matrix densification, physical properties, and mechanical properties. The system provides a top-level identification system for grouping different types of SiC-SiC composites into different classes and provides a means of identifying the general structure and properties of a given SiC-SiC composite. It is meant to assist the ceramics community in developing, selecting, and using SiC-SiC composites with the appropriate composition, construction, and properties for a specific application.
1.3The classification system produces a classification code for a given SiC-SiC composite, which shows the type of fiber, reinforcement architecture, matrix type, fiber volume fraction, density, porosity, and tensile strength and modulus (room temperature).
1.3.1For example, Composites Classification Code, SC2-A2C-4D10-33—a SiC-SiC composite material/component (SC2) with a 95 %+ polymer precursor (A) based silicon carbide fiber in a 2-D (2) fiber architecture with a CVI matrix (C), a fiber volume fraction of 45 % (4 = 40 % to 45 %), a bulk density of 2.3 g/cc (D = 2.0 g/cc to 2.5 g/cc), an apparent porosity of 12 % (10 = 10 % to 15 %), an average ultimate tensile strength of 350 MPa (3 = 300 MPa to 399 MPa), and an average tensile modulus of 380 GPa (3 = 300 GPa to 399 GPa).
1.4This classification system is a top level identification tool which uses a limited number of composite properties for high level classification. It is not meant to be a complete, detailed material specification, because it does not cover the full range of composition, architecture, physical, mechanical, fabrication, and durability requirements commonly defined in a full design specification. Guide C1793 provides extensive and detailed direction and guidance in preparing a complete material specification for a given SiC-SiC composite component.
1.5Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM D 3878 : 2023 | Standard Terminology for Composite Materials |
ASTM C 1793 : 2015 | Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications |
ASTM D 4850 : 2013 : R2017 : EDT 1 | Standard Terminology Relating to Fabrics and Fabric Test Methods |
ASTM D 3878 : 2020 : REV B | Standard Terminology for Composite Materials |
ASTM D 4850 : 2023 | Standard Terminology Relating to Fabrics and Fabric Test Methods |
ASTM C 1793 : 2015 : R2024 | Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.