ASTM D 2622 : 2024 : REDLINE
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry
10-07-2024
English
01-07-2024
Committee |
D 02
|
DocumentType |
Redline
|
Pages |
12
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
Supersedes |
1.1This test method covers the determination of total sulfur in petroleum and petroleum products that are single-phase and either liquid at ambient conditions, liquefiable with moderate heat, or soluble in hydrocarbon solvents. These materials can include diesel fuel, jet fuel, kerosene, other distillate oil, naphtha, residual oil, lubricating base oil, hydraulic oil, crude oil, unleaded gasoline, gasoline-ethanol blends, and biodiesel.
1.2The range of this test method is between the PLOQ value (calculated by procedures consistent with Practice D6259) of 3 mg/kg total sulfur and the highest level sample in the round robin, 4.6 % by weight total sulfur.
Note 1:Instrumentation covered by this test method can vary in sensitivity. The applicability of the test method at sulfur concentrations below 3 mg/kg may be determined on an individual basis for WDXRF instruments capable of measuring lower levels, but precision in this test method does not apply.
1.2.1The values of the limit of quantitation (LOQ) and method precision for a specific laboratory’s instrument depends on instrument source power (low or high power), sample type, and the practices established by the laboratory to perform the method.
1.3Samples containing more than 4.6 % by mass sulfur should be diluted to bring the sulfur concentration of the diluted material within the scope of this test method. Samples that are diluted can have higher errors than indicated in Section 15 than non-diluted samples.
1.4Volatile samples (such as high vapor pressure gasolines or light hydrocarbons) may not meet the stated precision because of selective loss of light materials during the analysis.
1.5A fundamental assumption in this test method is that the standard and sample matrices are well matched, or that the matrix differences are accounted for (see 13.2). Matrix mismatch can be caused by C/H ratio differences between samples and standards or by the presence of other interfering heteroatoms or species (see Table 1).
1.6The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.7This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.