ASTM D 5769 : 2022
Current
The latest, up-to-date edition.
Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry
Hardcopy , PDF
English
25-08-2022
Committee |
D 02
|
DocumentType |
Test Method
|
Pages |
14
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method covers the determination in volume percent of benzene, toluene, other specified individual aromatic compounds, and total aromatics in finished motor gasoline, including gasolines containing oxygenated blending components, by gas chromatography/mass spectrometry (GC/MS). Precision is calculated for benzene, toluene and total aromatics.
1.2This test method has been evaluated using a D6300-compliant Interlaboratory Study (ILS), with the lowest and highest ILS sample averages listed as follows: benzene, 0.09 % to 4.00 %; toluene, 1.0 % to 13.0 %; and total (C6 to C12) aromatics, 10.0 % to 42.0 %. The ILS study did not test the method for individual hydrocarbon process streams produced in a refinery, such as reformates, fluid catalytic cracked naphthas, and so forth, used in the blending of gasolines.
1.3Results are reported to the nearest 0.01 % for benzene and 0.1 % for the other aromatics by liquid volume. The Report Section (14) describes the applicable reporting ranges of this test method.
1.4This test method includes a between test method bias section for spark-ignition engine fuel benzene reporting based on Practice D6708 assessment between Test Method D5769 and Test Method D3606 as a possible Test Method D5769 alternative to Test Method D3606. The Practice D6708 derived correlation equation is only applicable for blended fuels with benzene results concentration range from 0.05 % to 2.50 % by volume as measured and reported by Test Method D5769.
1.5The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to its use.
1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM D 6277 : 2007 : R2022 | Standard Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy |
ASTM D 3606 : 2021 | Standard Test Method for Determination of Benzene and Toluene in Spark Ignition Fuels by Gas Chromatography |
ASTM D 6122 : 2022 | Standard Practice for Validation of the Performance of Multivariate Online, At-Line, Field and Laboratory Infrared Spectrophotometer, and Raman Spectrometer Based Analyzer Systems |
ASTM D 8321 : 2022 | Standard Practice for Development and Validation of Multivariate Analyses for Use in Predicting Properties of Petroleum Products, Liquid Fuels, and Lubricants based on Spectroscopic Measurements |
ASTM D 6708 : 2021 | Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material |
ASTM D 6839 : 2021 : REV A | Standard Test Method for Hydrocarbon Types, Oxygenated Compounds, Benzene, and Toluene in Spark Ignition Engine Fuels by Multidimensional Gas Chromatography |
ASTM D 6593 : 2018 : EDT 1 | Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions |
ASTM D 8275 : 2022 | Standard Specification for Gasoline-like Test Fuel for Compression-Ignition Engines |
ASTM D 1319 : 2020 : REV A | Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption |
ASTM D 8071 : 2021 | Standard Test Method for Determination of Hydrocarbon Group Types and Select Hydrocarbon and Oxygenate Compounds in Automotive Spark-Ignition Engine Fuel Using Gas Chromatography with Vacuum Ultraviolet Absorption Spectroscopy Detection (GC-VUV) |
ASTM D 5580 : 2021 | Standard Test Method for Determination of Benzene, Toluene, Ethylbenzene, <emph type="ital"> p/m</emph>-Xylene, <emph type="ital">o</emph>-Xylene, C<inf>9</inf> and Heavier Aromatics, and Total Aromatics in Finished Gasoline by Gas Chromatography |
ASTM D 4057 : 2019 | Standard Practice for Manual Sampling of Petroleum and Petroleum Products |
ASTM D 4052 : 2018 : REV A | Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter |
ASTM D 1298 : 2012 : REV B : R2017 : EDT 1 | Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method |
ASTM D 4175 : 2022 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 4175 : 2024 : EDT 1 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 1298 : 2012 : REV B : R2017 | Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method |
ASTM D 4175 : 2022 : REV A | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 6708 : 2024 | Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material |
ASTM D 6300 : 2021 | Standard Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 6300 : 2023 | Standard Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 4175 : 2023 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 3606 : 2022 | Standard Test Method for Determination of Benzene and Toluene in Spark Ignition Fuels by Gas Chromatography |
ASTM D 6300 : 2023 : REV A | Standard Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 3606 : 2024 | Standard Test Method for Determination of Benzene and Toluene in Spark Ignition Fuels by Gas Chromatography |
ASTM D 4175 : 2022 : REV A : EDT 1 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 4175 : 2023 : EDT 1 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 4175 : 2023 : REV A | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 4175 : 2022 : EDT 1 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 3606 : 2020 : EDT 1 | Standard Test Method for Determination of Benzene and Toluene in Spark Ignition Fuels by Gas Chromatography |
ASTM D 4057 : 2022 | Standard Practice for Manual Sampling of Petroleum and Petroleum Products |
ASTM D 3606 : 2021 | Standard Test Method for Determination of Benzene and Toluene in Spark Ignition Fuels by Gas Chromatography |
ASTM D 4052 : 2022 | Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter |
ASTM D 4175 : 2024 | Standard Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants |
ASTM D 6300 : 2024 | Standard Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products, Liquid Fuels, and Lubricants |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.