• Shopping Cart
    There are no items in your cart

ASTM D 6938 : 2006 : EDT 1

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Superseded by

ASTM D 6938 : 2007

Language(s)

English

Published date

20-11-2006

€67.30
Excluding VAT

Committee
D 18
DocumentType
Test Method
Pages
9
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy

1.1 This test method describes the procedures for measuring in-place density and moisture of soil and soil-aggregate by use of nuclear equipment. The density of the material may be measured by direct transmission, backscatter, or backscatter/air-gap ratio methods. Measurements for water (moisture) content are taken at the surface in backscatter mode regardless of the mode being used for density. It is the intent of this subcommittee that this standard replaces D2922 and D3017.

1.1.1 For limitations see Section on Interferences.

1.2 The total or wet density of soil and soil-aggregate is measured by the attenuation of gamma radiation where, in direct transmission, the source is placed at a known depth up to 300 mm (12 in.) and the detector (s) remains on the surface ( some gauges may reverse this orientation ); or in backscatter or backscatter/air-gap the source and detector (s) both remain on the surface.

1.2.1 The density of the test sample in mass per unit volume is calculated by comparing the detected rate of gamma radiation with previously established calibration data.

1.2.2 The dry density of the test sample is obtained by subtracting the water mass per unit volume from the test sample wet density ( Section 11 ). Most gauges display this value directly.

1.3 The gauge is calibrated to read the water mass per unit volume of soil or soil-aggregate. When divided by the density of water, and then multiplied by 100, the water mass per unit volume is equivalent to the volumetric water content. The water mass per unit volume is determined by the thermalizing or slowing of fast neutrons by hydrogen, a component of water. The neutron source and the thermal neutron detector are both located at the surface of the material being tested. The water content most prevalent in engineering and construction activities is known as the gravimetric water content, w, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage.

1.4 Two alternative procedures are provided.

1.4.1 Procedure A describes the direct transmission method in which the gamma source rod extends through the base of the gauge into a pre-formed hole to a desired depth. The direct transmission is the preferred method.

1.4.2 Procedure B involves the use of a dedicated backscatter gauge or the source rod in the backscatter position. This places the gamma and neutron sources and the detectors in the same plane.

1.5 SI Units The values stated in SI units are to be regarded as the standard. The values in inch-pound units (ft - lb units) are provided for information only.

1.6 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D 6026.

1.6.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the users objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

ASTM D 5195 : 2014 Standard Test Method for Density of Soil and Rock In-Place at Depths Below Surface by Nuclear Methods
ASTM B 788/B788M : 2009 : R2014 Standard Practice for Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe
ASTM D 7380 : 2015 Standard Test Method for Soil Compaction Determination at Shallow Depths Using 5-lb (2.3 kg) Dynamic Cone Penetrometer
ASTM B 790/B790M : 2016 Standard Practice for Structural Design of Corrugated Aluminum Pipe, Pipe-Arches, and Arches for Culverts, Storm Sewers, and Other Buried Conduits
ASTM F 1668 : 2016 Standard Guide for Construction Procedures for Buried Plastic Pipe
ASTM B 789/B789M : 2016 Standard Practice for Installing Corrugated Aluminum Structural Plate Pipe for Culverts and Sewers
ASTM D 3839 : 2014 Standard Guide for Underground Installation of “Fiberglass” (Glass-Fiber Reinforced Thermosetting-Resin) Pipe
ASTM D 5220 : 2014 Standard Test Method for Water Mass per Unit Volume of Soil and Rock In-Place by the Neutron Depth Probe Method
ASTM D 4718/D4718M : 2015 Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles
ASTM D 7013/D7013M : 2015 Standard Guide for Calibration Facility Setup for Nuclear Surface Gauges
ASTM D 7830/D7830M : 2014 Standard Test Method for In-Place Density (Unit Weight) and Water Content of Soil Using an Electromagnetic Soil Density Gauge
ASTM D 7765 : 2018 : REV A Standard Practice for Use of Foundry Sand in Structural Fill and Embankments
ASTM D 5080 : 2017 Standard Test Method for Rapid Determination of Percent Compaction
ASTM A 807/A807M : 2017 Standard Practice for Installing Corrugated Steel Structural Plate Pipe for Sewers and Other Applications
ASTM D 5874 : 2016 Standard Test Methods for Determination of the Impact Value (IV) of a Soil
ASTM D 8152 : 2018 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
ASTM D 8167/D8167M : 2018 : REV A Standard Test Method for In-Place Bulk Density of Soil and Soil-Aggregate by a Low-Activity Nuclear Method (Shallow Depth)
ASTM D 7759/D7759M : 2014 Standard Guide for Nuclear Surface Moisture and Density Gauge Calibration
ASTM F 2656/F2656M : 2018 : REV A Standard Test Method for Crash Testing of Vehicle Security Barriers

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.