• Shopping Cart
    There are no items in your cart

ASTM D 7351 : 2019

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Test Method for Determination of Sediment Retention Device (SRD) Effectiveness in Sheet Flow Applications

Available format(s)

Hardcopy , PDF

Superseded date

22-09-2021

Language(s)

English

Published date

03-06-2019

€67.30
Excluding VAT

This test method establishes the guidelines, requirements and procedures for evaluating the ability of Sediment Retention Devices (SRDs) to retain sediment when exposed to sediment-laden water “sheet” flows.

Committee
D 18
DocumentType
Test Method
Pages
7
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This test method establishes the guidelines, requirements and procedures for evaluating the ability of Sediment Retention Devices (SRDs) to retain sediment when exposed to sediment-laden water “sheet” flows.

1.2This test method is applicable to the use of an SRD as a vertical permeable interceptor designed to remove suspended soil from overland, nonconcentrated water flow. The function of an SRD is to trap and allow settlement of soil particles from sediment laden water. The purpose is to reduce the transport of eroded soil from a disturbed site by water runoff.

1.3The test method presented herein is intended to indicate representative performance and is not necessarily adequate for all purposes in view of the wide variety of possible sediments and performance objectives.

1.4Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.

1.5All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.5.1The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any consideration for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM D 8057 : 2017 Standard Specification for Inlet Filters with a Rigid Frame

ASTM D 653 : 2007 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 3740 : 2012 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 5141 : 2009 Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device Using Site-Specific Soil
ASTM D 698 : 2000 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft<sup>3</sup> (600 kN-m/m<sup>3</sup>))
ASTM D 5141 : 2011 : R2018 Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device
ASTM D 3740 : 2019 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2004 : REV A : EDT 1 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2008 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2013 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 698 : 2012 : R2021 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft<sup>3</sup> (600 kN-m/m<sup>3</sup>))
ASTM D 5141 : 2011 Standard Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device
ASTM D 6026 : 2006 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 1999 : REV C Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2020 : EDT 1 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 5141 : 1996 : R1999 Standard Test Method for Determining Filtering Efficiency and Flow Rate of a Geotextile for Silt Fence Application Using Site-Specific Soil
ASTM D 6026 : 1999 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2011 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2001 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2010 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 1996 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2004 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2001 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2021 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1996 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2012 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2003 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 5141 : 1996 : R2004 Standard Test Method for Determining Filtering Efficiency and Flow Rate of a Geotextile for Silt Fence Application Using Site-Specific Soil
ASTM D 6026 : 2021 Standard Practice for Using Significant Digits and Data Records in Geotechnical Data
ASTM D 6026 : 2001 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2004 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 698 : 2012 : EDT 2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft<sup>3</sup> (600 kN-m/m<sup>3</sup>))

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.