• There are no items in your cart

ASTM E 1450 : 2024

Current

Current

The latest, up-to-date edition.

Standard Test Method for Tension Testing of Structural Alloys in Liquid Helium

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

09-08-2024

Committee
E 28
DocumentType
Test Method
Pages
10
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

1.1This test method describes procedures for the tension testing of structural alloys in liquid helium. The format is similar to that of other ASTM tension testing standards, but the contents includes modifications for cryogenic testing that require special apparatus, smaller specimens, and concern for discontinous yielding, adiabatic heating, and strain-rate effects.

1.2To conduct a tension test by this standard, the specimen in a tensile cryostat is fully submerged in normal liquid helium (He I) and tested using crosshead displacement control at a nominal strain rate of 10−3 mm/mm/s or less. Tests using force control or high strain rates are not considered.

1.3This test method specifies methods for the measurement of yield strength, tensile strength, elongation, and reduction of area. The determination of the Young’s modulus is treated in Test Method E111.

Note 1:The boiling point of normal liquid helium (He I) at sea level is 4.2 K (−269 °C or −452.1 °F or 7.6 °R). It decreases with geographic elevation and is 4.0 K (−269.2 °C or −452.5 °F or 7.2 °R) at the National Institute of Standards and Technology in Colorado, 1677 m (5500 ft) above sea level. In this standard the temperature is designated 4 K.

1.4The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.

1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 5.

1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM F 2924 : 2014 : R2021 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion
ASTM F 3184 : 2016 : R2023 Standard Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder Bed Fusion
ASTM E 1823 : 2024 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM F 3302 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Titanium Alloys via Powder Bed Fusion
ASTM F 3213 : 2017 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion
ASTM F 3055 : 2014 : REV A : R2021 Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion
ASTM F 3056 : 2014 : R2021 Standard Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion
ASTM F 3318 : 2018 Standard for Additive Manufacturing – Finished Part Properties – Specification for AlSi10Mg with Powder Bed Fusion – Laser Beam

ASTM E 4 : 2021 Standard Practices for Force Calibration and Verification of Testing Machines
ASTM E 4 : 2024 Standard Practices for Force Calibration and Verification of Testing Machines

€57.73
Excluding VAT

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.