• Shopping Cart
    There are no items in your cart

ASTM E 1854 : 2019 : REDLINE

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts

Available format(s)

PDF , PDF Redline

Language(s)

English

Published date

01-10-2019

Superseded date

21-10-2019

€71.67
Excluding VAT

Committee
E 10
DocumentType
Redline
Pages
13
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This practice sets forth requirements to ensure consistency in neutron-induced displacement damage testing of silicon and gallium arsenide electronic piece parts. This requires controls on facility, dosimetry, tester, and communications processes that affect the accuracy and reproducibility of these tests. It provides background information on the technical basis for the requirements and additional recommendations on neutron testing.

1.2Methods are presented for ensuring and validating consistency in neutron displacement damage testing of electronic parts such as integrated circuits, transistors, and diodes. The issues identified and the controls set forth in this practice address the characterization and suitability of the radiation environments. They generally apply to reactor sources, accelerator-based neutron sources, such as 14-MeV DT sources, and 252Cf sources. Facility and environment characteristics that introduce complications or problems are identified, and recommendations are offered to recognize, minimize or eliminate these problems. This practice may be used by facility users, test personnel, facility operators, and independent process validators to determine the suitability of a specific environment within a facility and of the testing process as a whole. Electrical measurements are addressed in other standards, such as Guide F980. Additional information on conducting irradiations can be found in Practices E798 and F1190. This practice also may be of use to test sponsors (organizations that establish test specifications or otherwise have a vested interest in the performance of electronics in neutron environments).

1.3Methods for the evaluation and control of undesired contributions to damage are discussed in this practice. References to relevant ASTM standards and technical reports are provided. Processes and methods used to arrive at the appropriate test environments and specification levels for electronics systems are beyond the scope of this practice; however, the process for determining the 1-MeV equivalent displacement specifications from operational environment neutron spectra should employ the methods and parameters described herein. Some important considerations and recommendations are addressed in Appendix X1 (Nonmandatory information).

1.4The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM E 720 : 2016 : REDLINE Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
ASTM E 1855 : 2015 : REDLINE Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors
ASTM E 2450 : 2016 : REDLINE Standard Practice for Application of CaF<inf>2</inf>(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
ASTM E 1297 : 2018 : REDLINE Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
ASTM E 721 : 2016 : REDLINE Standard Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics
ASTM E 722 : 2014 : REDLINE Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics
ASTM E 170 : 2017 : REDLINE Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 704 : 2013 : REDLINE Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
ASTM E 261 : 2016 : REDLINE Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
ASTM E 393 : 2013 : REDLINE Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
ASTM F 1190 : 2018 : REDLINE Standard Guide for Neutron Irradiation of Unbiased Electronic Components
ASTM E 944 : 2013-01 GUIDE FOR APPLICATION OF NEUTRON SPECTRUM ADJUSTMENT METHODS IN REACTOR SURVEILLANCE

Access your standards online with a subscription

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

€71.67
Excluding VAT