ASTM E 2050 : 2017
Current
The latest, up-to-date edition.
Standard Test Method for Determination of Total Carbon in Mold Powders by Combustion
Hardcopy , PDF
English
01-04-2017
Committee |
E 01
|
DocumentType |
Test Method
|
Pages |
4
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method covers the determination of total carbon in mold powders in the concentration range from 1 % to 25 %.
1.2The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3This test method has been evaluated in accordance with Practice E1601 and Guide E1763. Unless otherwise noted in the precision and bias section, the lower limit in the scope of each method specifies the lowest analyte content that may be analyzed with acceptable error (defined as a nominal 5 % risk of obtaining a 50 % or larger relative difference in results on the same test sample in two laboratories).
1.4This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.5This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM E 29 : 2013 : R2019 | Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
ASTM E 135 : 2023 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2024 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 29 : 2002 | Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
ASTM E 135 : 2021 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1019 : 2018 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques |
ASTM E 1019 : 2003 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM E 135 : 2003 : REV B | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1601 : 2019 | Standard Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical Method |
ASTM E 135 : 2023 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1601 : 1998 | Standard Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical Method |
ASTM E 1019 : 2008 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques |
ASTM E 1601 : 2010 | Standard Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical Method |
ASTM E 1763 : 2006 | Standard Guide for Interpretation and Use of Results from Interlaboratory Testing of Chemical Analysis Methods (Withdrawn 2015) |
ASTM E 1019 : 2024 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Combustion and Inert Gas Fusion Techniques |
ASTM E 135 : 2002 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2022 : REV B | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1601 : 2012 | Standard Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical Method |
ASTM E 50 : 2017 | Standard Practices for Apparatus, Reagents, and Safety Considerations for Chemical Analysis of Metals, Ores, and Related Materials |
ASTM E 135 : 2022 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 50 : 2024 | Standard Practices for Apparatus, Reagents, and Safety Considerations for Chemical Analysis of Metals, Ores, and Related Materials |
ASTM E 135 : 2021 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2003 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1763 : 1998 | Standard Guide for Interpretation and Use of Results from Interlaboratory Testing of Chemical Analysis Methods |
ASTM E 135 : 2003 : REV C | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2022 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 50 : 1982 : R1986 | Standard Practices for Apparatus, Reagents, and Safety Precautions for Chemical Analysis of Metals |
ASTM E 135 : 2020 : REV B | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1019 : 2000 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM E 1019 : 2002 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM E 1019 : 2011 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques |
ASTM E 29 : 2022 | Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.