ASTM E 415 : 2021
Current
The latest, up-to-date edition.
Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry
Hardcopy , PDF
English
27-10-2021
Committee |
E 01
|
DocumentType |
Test Method
|
Pages |
12
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method covers the simultaneous determination of 21 alloying and residual elements in carbon and low-alloy steels by spark atomic emission vacuum spectrometry in the mass fraction ranges shown Note 1.
Element | Composition Range, % | |
Applicable Range, | Quantitative Range, | |
Aluminum | 0 to 0.093 | 0.006 to 0.093 |
Antimony | 0 to 0.027 | 0.006 to 0.027 |
Arsenic | 0 to 0.1 | 0.003 to 0.1 |
Boron | 0 to 0.007 | 0.0004 to 0.007 |
Calcium | 0 to 0.003 | 0.002 to 0.003 |
Carbon | 0 to 1.1 | 0.02 to 1.1 |
Chromium | 0 to 8.2 | 0.007 to 8.14 |
Cobalt | 0 to 0.20 | 0.006 to 0.20 |
Copper | 0 to 0.5 | 0.006 to 0.5 |
LeadC | 0 to 0.2 | 0.002 to 0.2 |
Manganese | 0 to 2.0 | 0.03 to 2.0 |
Molybdenum | 0 to 1.3 | 0.007 to 1.3 |
Nickel | 0 to 5.0 | 0.006 to 5.0 |
Niobium | 0 to 0.12 | 0.003 to 0.12 |
Nitrogen | 0 to 0.015 | 0.01 to 0.055 |
Phosphorous | 0 to 0.085 | 0.006 to 0.085 |
Silicon | 0 to 1.54 | 0.02 to 1.54 |
Sulfur | 0 to 0.055 | 0.001 to 0.055 |
Tin | 0 to 0.061 | 0.005 to 0.061 |
Titanium | 0 to 0.2 | 0.001 to 0.2 |
Vanadium | 0 to 0.3 | 0.003 to 0.3 |
Zirconium | 0 to 0.05 | 0.01 to 0.05 |
Note 1:The mass fraction ranges of the elements listed have been established through cooperative testing2 of reference materials.
1.2This test method covers analysis of specimens having a diameter adequate to overlap and seal the bore of the spark stand opening. The specimen thickness can vary significantly according to the design of the spectrometer stand, but a thickness between 10 mm and 38 mm has been found to be most practical.
1.3This test method covers the routine control analysis in iron and steelmaking operations and the analysis of processed material. It is designed for chill-cast, rolled, and forged specimens. Better performance is expected when reference materials and specimens are of similar metallurgical condition and composition. However, it is not required for all applications of this standard.
1.4This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM B 883 : 2019 | Standard Specification for Metal Injection Molded (MIM) Materials |
ASTM B 848/B848M : 2021 | Standard Specification for Powder Forged (PF) Ferrous Materials |
ASTM A 751 : 2020 | Standard Test Methods and Practices for Chemical Analysis of Steel Products |
ASTM E 701 : 1980 : R2018 | Standard Test Methods for Municipal Ferrous Scrap |
ASTM E 1806 : 2018 | Standard Practice for Sampling Steel and Iron for Determination of Chemical Composition |
ASTM E2972 : 2015(2019) | Standard Guide for Production, Testing, and Value Assignment of In-House Reference Materials for Metals, Ores, and Other Related Materials |
ASTM E 1077 : 2014 : R2021 | Standard Test Methods for Estimating the Depth of Decarburization of Steel Specimens |
ASTM E 2093 : 2012 : R2016 | Standard Guide for Optimizing, Controlling and Assessing Test Method Uncertainties from Multiple Workstations in the Same Laboratory Organization |
ASTM D 6689 : 2001 : R2019 : EDT 1 | Standard Guide for Optimizing, Controlling, and Reporting Test Method Uncertainties from Multiple Workstations in the Same Laboratory Organization |
ASTM E 29 : 2013 : R2019 | Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
ASTM E 135 : 2023 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2024 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 135 : 2021 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1019 : 2018 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques |
ASTM E 691 : 2020 | Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method |
ASTM E 691 : 2023 | Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method |
ASTM E 135 : 2023 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 691 : 2022 | Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method |
ASTM E 1019 : 2024 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Combustion and Inert Gas Fusion Techniques |
ASTM E 135 : 2022 : REV B | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 691 : 2021 | Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method |
ASTM E 350 : 2023 | Standard Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron |
ASTM E 135 : 2022 : REV A | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1950 : 2017 | Standard Practice for Reporting Results from Methods of Chemical Analysis (Withdrawn 2023) |
ASTM E 350 : 2018 | Standard Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron |
ASTM E 135 : 2022 | Standard Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials |
ASTM E 1806 : 2023 | Standard Practice for Sampling Steel and Iron for Determination of Chemical Composition |
ASTM E 29 : 2022 | Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.