• Shopping Cart
    There are no items in your cart

ASTM E 606/E606M : 2012

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Test Method for Strain-Controlled Fatigue Testing

Available format(s)

Hardcopy , PDF

Superseded date

26-08-2020

Superseded by

ASTM E 606/E606M : 2019

Language(s)

English

Published date

01-06-2012

€74.48
Excluding VAT

1.1 This test method covers the determination of fatigue properties of nominally homogeneous materials by the use of test specimens subjected to uniaxial forces.

Committee
E 08
DocumentType
Test Method
Pages
16
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1 This test method covers the determination of fatigue properties of nominally homogeneous materials by the use of test specimens subjected to uniaxial forces. It is intended as a guide for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this test method is intended primarily for strain-controlled fatigue testing, some sections may provide useful information for force-controlled or stress-controlled testing.

1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.

1.3 This test method is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains are on the same order or less than the magnitudes of time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium, and others, provided they are controlled throughout the test, do not cause loss of or change in dimension with time, and are detailed in the data report.

Note 1—The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to the time-independent (that is, noncreep) component of inelastic strain. To truly determine a time-independent strain the force would have to be applied instantaneously, which is not possible. A useful engineering estimate of time-independent strain can be obtained when the strain rate exceeds some value. For example, a strain rate of 1 × 103 sec1 is often used for this purpose. This value should increase with increasing test temperature.

1.4 This test method is restricted to the testing of uniform gage section test specimens subjected to axial forces as shown in Fig. 1(a). Testing is limited to strain-controlled cycling. The test method may be applied to hourglass specimens, see Fig. 1(b), but the user is cautioned about uncertainties in data analysis and interpretation. Testing is done primarily under constant amplitude cycling and may contain interspersed hold times at repeated intervals. The test method may be adapted to guide testing for more general cases where strain or temperature may vary according to application specific histories. Data analysis may not follow this test method in such cases.

1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.


Note 1—* Dimension d is recommended to be 6.35 mm (0.25 in.). See 7.1. Centers permissible. ** This diameter may be made greater or less than 2d depending on material hardness. In typically ductile materials diameters less than 2d are often employed and in typically brittle materials diameters greater than 2d may be found desirable.

Note 2—Threaded connections are more prone to inferior axial alignment and have greater potential for backlash, particularly if the connection with the grip is not properly designed.

FIG. 1 Recommended Low-Cycle Fatigue Specimens

ASTM E 1245 : 2003 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
ASTM E 1049 : 1985 : R2017 Standard Practices for Cycle Counting in Fatigue Analysis
ASTM E 1012 : 2014 Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
ASTM E 1823 : 2012 : REV : EDT 0 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2007 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1049 : 1985 : R2011 : EDT 1 Standard Practices for Cycle Counting in Fatigue Analysis
ASTM E 1245 : 1995 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
ASTM E 1245 : 2003 : R2008 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
ASTM E 1823 : 2009 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1012 : 1999 Standard Practice for Verification of Specimen Alignment Under Tensile Loading
ASTM E 1012 : 2012 Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
ASTM E 1012 : 2014 : EDT 1 Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
ASTM E 1049 : 1985 : R2005 Standard Practices for Cycle Counting in Fatigue Analysis
ASTM E 1823 : 2005 : REV A : EDT 1 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2010 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2009 : REV B Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2012 : REV D Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2012 : REV B Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1012 : 2012 : EDT 1 Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
ASTM E 1245 : 2000 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
ASTM E 1012 : 2005 Standard Practice for Verification of Test Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
ASTM E 1823 : 1996 : R2002 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 1996 : EDT 1 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2012 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2007 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1245 : 2003 : R2016 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis
ASTM E 1823 : 2013 Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2012 : REV C Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1823 : 2005 : REV A Standard Terminology Relating to Fatigue and Fracture Testing
ASTM E 1049 : 1985 : R1997 Standard Practices for Cycle Counting in Fatigue Analysis
ASTM E 1823 : 2011 Standard Terminology Relating to Fatigue and Fracture Testing

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.