• Shopping Cart
    There are no items in your cart

ASTM E 704 : 2019

Current

Current

The latest, up-to-date edition.

Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

01-10-2019

€56.53
Excluding VAT

Committee
E 10
DocumentType
Test Method
Pages
5
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

1.1This test method covers procedures for measuring reaction rates by assaying a fission product (F.P.) from the fission reaction 238U(n,f)F.P.

1.2The reaction is useful for measuring neutrons with energies from approximately 1.5 to 7 MeV and for irradiation times up to 30 to 40 years, provided that the analysis methods described in Practice E261 are followed.

1.3Equivalent fission neutron fluence rates as defined in Practice E261 can be determined.

1.4Detailed procedures for other fast-neutron detectors are referenced in Practice E261.

1.5The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM E 181 : 2017 Standard Test Methods for Detector Calibration and Analysis of Radionuclides
ASTM E 1018 : 2020 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 262 : 2017 Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
ASTM E 1018 : 2009 : R2013 : EDT 1 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 320 : 1979 : R1990 : EDT 1 Test Method for Cesium-137 in Nuclear Fuel Solutions by Radiochemical Analysis
ASTM E 262 : 2017 : R2024 : EDT 1 Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
ASTM E 170 : 2024 Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 170 : 2020 Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 181 : 2023 Standard Guide for Detector Calibration and Analysis of Radionuclides in Radiation Metrology for Reactor Dosimetry
ASTM E 944 : 1996 Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, (IIA)
ASTM E 393 : 1996 Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
ASTM E 261 : 2016 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
ASTM E 170 : 2023 Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 1005 : 2021 Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance
ASTM E 1018 : 2020 : EDT 1 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 705 : 1996 Standard Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237
ASTM E 261 : 2016 : R2021 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
ASTM E 1005 : 2016 Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.