ASTM F 1466 : 1999 : R2015
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
View Superseded by
Standard Specification for Iron-Nickel-Cobalt Alloys for Metal-to-Ceramic Sealing Applications
Hardcopy , PDF
15-07-2024
English
01-07-2015
CONTAINED IN VOL. 10.04, 2015 Defines two iron-nickel-cobalt alloys, the former, (UNS No. K94630), containing nominally 29% nickel, 17% cobalt, and 53% iron, the latter, (UNS No. K94620), nominally 27% nickel, 25% cobalt and 48% iron, in the forms of wire, rod, bar, strip, sheet, and tubing, intended primarily for brazed metal-to-ceramic seals with alumina ceramics, for vacuum electronic applications. Unless otherwise indicated, all articles apply to both alloys
Committee |
F 01
|
DocumentType |
Standard
|
Pages |
6
|
ProductNote |
Reconfirmed 2015
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
SupersededBy | |
Supersedes |
1.1This specification covers two iron-nickel-cobalt alloys, the former, (UNS No. K94630), containing nominally 29 % nickel, 17 % cobalt, and 53 % iron, the latter, (UNS No. K94620), nominally 27 % nickel, 25 % cobalt and 48 % iron, in the forms of wire, rod, bar, strip, sheet, and tubing, intended primarily for brazed metal-to-ceramic seals with alumina ceramics, for vacuum electronic applications. Unless otherwise indicated, all articles apply to both alloys.
1.2The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3The following hazard caveat pertains only to the test method portion, Sections 14 and 16 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM E 228 : 2017 : REDLINE | Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer |
ASTM D 1971 : 2002 | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM D 1971 : 2011 | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM E 1060 : 1985 | PRACTICE FOR INTERLABORATORY TESTING OF SPECTROCHEMICAL METHODS OF ANALYSIS |
ASTM E 1019 : 2018 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques |
ASTM E 1019 : 2003 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM D 1971 : 2002 : R2006 | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM E 1019 : 2008 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques |
ASTM D 1971 : 1995 | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM D 1971 : 2016 | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM D 1971 : 2016 : REDLINE | Standard Practices for Digestion of Water Samples for Determination of Metals by Flame Atomic Absorption, Graphite Furnace Atomic Absorption, Plasma Emission Spectroscopy, or Plasma Mass Spectrometry |
ASTM E 8 : 2004 | Standard Test Methods for Tension Testing of Metallic Materials |
ASTM E 1019 : 2000 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM E 1019 : 2002 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel and in Iron, Nickel, and Cobalt Alloys |
ASTM E 354 : 2014 : REDLINE | Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys |
ASTM E 1019 : 2011 | Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques |
ASTM E 92 : 2017 : REDLINE | Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.