ASTM F 1940 : 2007 : REV A
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
View Superseded by
Standard Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners
Hardcopy , PDF
09-10-2018
English
01-09-2007
CONTAINED IN VOL. 01.09, 2018 Defines a procedure to prevent, to the extent possible, internal hydrogen embrittlement (IHE) of fasteners by monitoring the plating or coating process, such as those described in Specifications F 1137 and F 1941.
Committee |
F 16
|
DocumentType |
Test Method
|
Pages |
9
|
ProductNote |
Reconfirmed EV A
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
SupersededBy | |
Supersedes |
1.1 This test method covers a procedure to prevent, to the extent possible, internal hydrogen embrittlement (IHE) of fasteners by monitoring the plating or coating process, such as those described in Specifications F 1137 and F 1941. The process is quantitatively monitored on a periodic basis with a minimum number of specimens as compared to qualifying each lot of fasteners being plated or coated. Trend analysis is used to ensure quality as compared to statistical sampling analysis of each lot of fasteners. This test method consists of a mechanical test for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.
1.2 This test method consists of a mechanical test, conducted on a standard specimen used as a witness, for the evaluation and control of the potential for IHE that may arise from various sources of hydrogen in a plating or coating process.
1.3 This test method is limited to evaluating hydrogen induced embrittlement due only to processing (IHE) and not due to environmental exposure (EHE, see Test Method F 1624).
1.4 This test method is not intended to measure the relative susceptibility of steels to either IHE or EHE.
1.5 This test method is limited to evaluating processes used for plating or coating ferrous fasteners.
1.6 This test method uses a notched square bar specimen that conforms to Test Method F 519, Type 1e, except that the radius is increased to accommodate the deposition of a larger range of platings and coatings. For the background on Test Method F 519 testing, see publications ASTM STP 543 and ASTM STP 962. The stress concentration factor is at a K
1.7 The sensitivity of each lot of specimens to IHE shall be demonstrated. A specimen made of AISI E4340 steel heat treated to a hardness range of 50 to 52 HRC is used to produce a "worst case" condition and maximize sensitivity to IHE.
1.8 The test is an accelerated (24 h) test method to measure the threshold for hydrogen stress cracking, and is used to quantify the amount of residual hydrogen in the specimen. The specimen undergoes sustained load and slow strain rate testing by using incremental loads and hold times under displacement control to measure a threshold stress in an accelerated manner in accordance with Test Method F 1624.
1.9 In this test method, bending is used instead of tension because it produces the maximum local limit load tensile stress in a notched bar of up to 2.3 times the yield strength as measured in accordance with Test Method E 8. A fastener that is unintentionally exposed to bending on installation may attain this maximum local tensile stress.
1.10 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM B 633 : 2019 | Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel |
ASTM A 193/A193M : 2017 | Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications |
ASTM B 839 : 2004 : R2014 | Standard Test Method for Residual Embrittlement in Metallic Coated, Externally Threaded Articles, Fasteners, and Rod-Inclined Wedge Method (Withdrawn 2021) |
ASTM F 2833 : 2011 : R2017 | Standard Specification for Corrosion Protective Fastener Coatings with Zinc Rich Base Coat and Aluminum Organic/Inorganic Type |
ASTM F 2882/F2882M : 2017 | Standard Specification for Screws, Alloy Steel, Heat Treated, 170 ksi and 1170 MPa Minimum Tensile Strength (Inch and Metric) |
ASTM F 3019/F3019M : 2014 | Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners |
ASTM A 574 : 2017 | Standard Specification for Alloy Steel Socket-Head Cap Screws |
ASTM F 1941/F1941M : 2016 | Standard Specification for Electrodeposited Coatings on Mechanical Fasteners, Inch and Metric |
ASTM A 194/A194M : 2018 | Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both |
ASTM F 3125/F3125M : 2018 | Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength |
ASTM E 177 : 2014 : REDLINE | Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods |
SAE AMS 3078 : 1998 | COMPOUND - CORROSION PREVENTIVE - SOFT FILM, COLD APPLICATION |
SAE AMS 2759 : 2014 | HEAT TREATMENT OF STEEL PARTS, GENERAL REQUIREMENTS |
SAE AMS 6415 : 2016 | STEEL, BARS, FORGINGS, AND TUBING 0.80CR - 1.8NI - 0.25MO (0.38 - 0.43C) (SAE 4340) |
ASTM E 1823 : 2013-07 | TERMINOLOGY RELATING TO FATIGUE AND FRACTURE TESTING |
ASTM E 8 : 2004 | Standard Test Methods for Tension Testing of Metallic Materials |
ASTM F 1624 : 2012-11 | TEST METHOD FOR MEASUREMENT OF HYDROGEN EMBRITTLEMENT THRESHOLD IN STEEL BY THE INCREMENTAL STEP LOADING TECHNIQUE |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.