ASTM G 74 : 2013 : R2021
Current
The latest, up-to-date edition.
Standard Test Method for Ignition Sensitivity of Nonmetallic Materials and Components by Gaseous Fluid Impact
Hardcopy , PDF
English
02-11-2021
Committee |
G 04
|
DocumentType |
Test Method
|
Pages |
40
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1This test method describes a method to determine the relative sensitivity of nonmetallic materials (including plastics, elastomers, coatings, etc.) and components (including valves, regulators flexible hoses, etc.) to dynamic pressure impacts by gases such as oxygen, air, or blends of gases containing oxygen.
1.2This test method describes the test apparatus and test procedures employed in the evaluation of materials and components for use in gases under dynamic pressure operating conditions up to gauge pressures of 69 MPa and at elevated temperatures.
1.3This test method is primarily a test method for ranking of materials and qualifying components for use in gaseous oxygen. The material test method is not necessarily valid for determination of the sensitivity of the materials in an “as-used” configuration since the material sensitivity can be altered because of changes in material configuration, usage, and service conditions/interactions. However, the component testing method outlined herein can be valid for determination of the sensitivity of components under service conditions. The current provisions of this method were based on the testing of components having an inlet diameter (ID bore) less than or equal to 14 mm (see Note 1).
1.4A 5 mm Gaseous Fluid Impact Sensitivity (GFIS) test system and a 14 mm GFIS test system are described in this standard. The 5 mm GFIS system is utilized for materials and components that are directly attached to a high-pressure source and have minimal volume between the material/component and the pressure source. The 14 mm GFIS system is utilized for materials and components that are attached to a high pressure source through a manifold or other higher volume or larger sized connection. Other sizes than these may be utilized but no attempt has been made to characterize the thermal profiles of other volumes and geometries (see Note 1).
Note 1:The energy delivered by this test method is dependent on the gas volume being rapidly compressed at the inlet to the test specimen or test article. Therefore the geometry of the upstream volume (diameter and length) is crucial to the test and crucial to the application of the results to actual service conditions. It is therefore recommended that caution be exercised in applying the results of this testing to rapid pressurization of volumes larger than those standardized by this test method. This energy delivered by this standard is based on the rapid compression of the volume in either a 5 mm ID by 1000 mm long impact tube or a 14 mm ID by 750 mm long impact tube. These two upstream volumes are specified in this standard based on historic application within the industry.
1.5This test method can be utilized to provide batch-to-batch comparison screening of materials when the data is analyzed according to the methods described herein. Acceptability of any material by this test method may be based on its 50 % reaction pressure or its probability of ignition based on a logistic regression analysis of the data (described herein).
1.6Many ASTM, CGA, and ISO test standards require ignition testing of materials and components by gaseous fluid impact, also referred to as adiabatic compression testing. This test method provides the test system requirements consistent with the requirements of these other various standards. The pass/fail acceptance criteria may be provided within other standards and users should refer to those standards. Pass/fail guidance is provided in this standard such as that noted in section 4.6. This test method is designed to ensure that consistent gaseous fluid impact tests are conducted in different laboratories.
1.7The criteria used for the acceptance, retest, and rejection, or any combination thereof of materials and components for any given application shall be determined by the user and are not fixed by this method. However, it is recommended that at a minimum the 95 % confidence interval be established for all test results since ignition by this method is inherently probabilistic and should be treated by appropriate statistical methods.
1.8The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.9This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautions see Section 7.
1.10This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM G 127 : 2015 | Standard Guide for the Selection of Cleaning Agents for Oxygen-Enriched Systems |
ASTM G 114 : 2014 | Standard Practices for Evaluating the Age Resistance of Polymeric Materials Used in Oxygen Service |
ASTM G 126 : 2016 | Standard Terminology Relating to the Compatibility and Sensitivity of Materials in Oxygen Enriched Atmospheres |
ASTM G 128/G128M : 2015 | Standard Guide for Control of Hazards and Risks in Oxygen Enriched Systems |
ASTM G 88 : 2013 : EDT 1 | Standard Guide for Designing Systems for Oxygen Service |
ASTM G 63 : 2015 | Standard Guide for Evaluating Nonmetallic Materials for Oxygen Service |
ASTM G 88 : 2021 | Standard Guide for Designing Systems for Oxygen Service |
ASTM G 114 : 2021 | Standard Practices for Evaluating the Age Resistance of Polymeric Materials Used in Oxygen Service |
ASTM G 94 : 2005 : R2014 | Standard Guide for Evaluating Metals for Oxygen Service |
ASTM G 14 : 2004 : R2024 | Standard Test Method for Impact Resistance of Pipeline Coatings (Falling Weight Test) |
ASTM D 3183 : 2010 : R2024 | Standard Practice for Rubber—Preparation of Pieces for Test Purposes from Products |
ASTM G 14 : 2004 : R2018 | Standard Test Method for Impact Resistance of Pipeline Coatings (Falling Weight Test) |
ASTM G 94 : 2022 | Standard Guide for Evaluating Metals for Oxygen Service |
ASTM G 175 : 2024 | Standard Test Method for Evaluating the Ignition Sensitivity and Fault Tolerance of Oxygen Pressure Regulators Used for Medical and Emergency Applications |
ASTM G 63 : 2015 : R2023 | Standard Guide for Evaluating Nonmetallic Materials for Oxygen Service |
ASTM G 175 : 2013 | Standard Test Method for Evaluating the Ignition Sensitivity and Fault Tolerance of Oxygen Pressure Regulators Used for Medical and Emergency Applications |
ASTM D 2463 : 2023 | Standard Test Method for Drop Impact Resistance of Blow-Molded Thermoplastic Containers |
ASTM G 175 : 2013 : R2021 | Standard Test Method for Evaluating the Ignition Sensitivity and Fault Tolerance of Oxygen Pressure Regulators Used for Medical and Emergency Applications |
ASTM D 4894 : 2019 | Standard Specification for Polytetrafluoroethylene (PTFE) Granular Molding and Ram Extrusion Materials |
ASTM D 3182 : 2021 | Standard Practice for Rubber—Materials, Equipment, and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets |
ASTM D 2463 : 2015 | Standard Test Method for Drop Impact Resistance of Blow-Molded Thermoplastic Containers |
ASTM D 3182 : 2021 : REV A | Standard Practice for Rubber—Materials, Equipment, and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets |
ASTM D 3183 : 2010 : R2019 | Standard Practice for Rubber—Preparation of Pieces for Test Purposes from Products |
ASTM D 4894 : 2019 : R2024 | Standard Specification for Polytetrafluoroethylene (PTFE) Granular Molding and Ram Extrusion Materials |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.