EN 16091:2022
Current
The latest, up-to-date edition.
Liquid petroleum products - Middle distillates and fatty acid methyl ester (FAME) fuels and blends - Determination of oxidation stability by rapid small scale oxidation test (RSSOT)
19-10-2022
This document specifies a method for the determination of the oxidation stability of middle distillate fuels, fatty acid methyl ester (FAME) fuel and blends thereof, under accelerated conditions, by measuring the induction period to the specified breakpoint in a reaction vessel charged with the sample and oxygen at 140 °C.NOTE 1 For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction (φ).NOTE 2 The induction period is used as an indication for the resistance of middle distillates, fatty acid methyl ester (FAME) fuels and blends thereof against oxidation. This correlation can vary markedly under different conditions with different FAMEs and diesel fuel blends.NOTE 3 The presence of ignition improvers can lead to lower oxidation stability results determined by this method. It has for instance been observed that the addition of 2-ethyl hexyl nitrate (2-EHN) can reduce the measured oxidation stability values. See [6] for details.NOTE 4 For further information on the precision data at a test temperature of 120 °C see Annex C.
DocumentType |
Standard
|
PublisherName |
Comite Europeen de Normalisation
|
Status |
Current
|
Standards | Relationship |
NS-EN 16091:2022 | Identical |
ÖNORM EN 16091:2023 01 01 | Identical |
DS/EN 16091:2022 | Identical |
NF EN 16091:2022 | Identical |
PN-EN 16091:2023-01 | Identical |
UNI EN 16091:2023 | Identical |
SN EN 16091:2022 | Identical |
UNE-EN 16091:2023 | Identical |
BS EN 16091:2022 | Equivalent |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.