• Shopping Cart
    There are no items in your cart

HB 2.2-2002

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Australian Standards for civil engineering students Structural engineering

Available format(s)

Hardcopy , PDF 1 User , PDF 3 Users , PDF 5 Users , PDF 9 Users

Superseded date

29-05-2024

Superseded by

HB 2.2-2003

Published date

01-01-2002

€92.72
Excluding VAT

1 - HB 2.2-2002 Australian Standards for civil engineering students - Structural engineering
3 - INTRODUCTION
4 - CONTENTS
5 - FOREWORD
6 - CHAPTER 1 CONCRETE STRUCTURES
7 - SECTION 1 SCOPE AND GENERAL
7 - 1.1 SCOPE AND APPLICATION
7 - 1.1.1 Scope
7 - 1.1.2 Application
8 - 1.2 REFERENCED DOCUMENTS
8 - 1.3 USE OF ALTERNATIVE MATERIALS OR METHODS
8 - 1.3.1 General
8 - 1.3.2 Existing structures
8 - 1.4 DESIGN
8 - 1.4.1 Design data
8 - 1.4.2 Design details
9 - 1.5 CONSTRUCTION
9 - 1.6 DEFINITIONS
9 - 1.6.1 General
9 - 1.6.2 Administrative definitions
9 - 1.6.3 Technical definitions
13 - 1.7 NOTATION
21 - SECTION 2 DESIGN REQUIREMENTS AND PROCEDURES
21 - 2.1 DESIGN REQUIREMENTS
21 - 2.1.1 Aim
21 - 2.1.2 Requirements
21 - 2.2 DESIGN FOR STABILITY
21 - 2.3 DESIGN FOR STRENGTH
21 - 2.4 DESIGN FOR SERVICEABILITY
21 - 2.4.1 General
22 - 2.4.2 Deflection limits for beams and slabs
22 - 2.4.3 Lateral drift
22 - 2.4.4 Cracking
22 - 2.4.5 Vibration
23 - 2.5 DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD TESTING OF A PROTOTYPE
23 - 2.6 DESIGN FOR DURABILITY
23 - 2.7 DESIGN FOR FIRE RESISTANCE
23 - 2.8 OTHER DESIGN REQUIREMENTS
24 - SECTION 3 LOADS AND LOAD COMBINATIONS FOR STABILITY, STRENGTH AND SERVICEABILITY
24 - 3.1 LOADS AND OTHER ACTIONS
24 - 3.1.1 Loads
24 - 3.1.2 Construction loads
24 - 3.1.3 Other actions
24 - 3. 2 LOAD COMBINATIONS FOR STABILITY DESIGN
25 - 3.3 LOAD COMBINATIONS FOR STRENGTH DESIGN
25 - 3.3.1 Structures other than bridges
25 - 3.3.2 Bridges
25 - 3.4 LOAD COMBINATIONS FOR SERVICEABILITY DESIGN
25 - 3.5 LOAD COMBINATIONS FOR FIRE- RESISTANCE DESIGN
26 - SECTION 4 DESIGN FOR DURABILITY
26 - 4.1 APPLICATION OF SECTION
26 - 4.2 DESIGN FOR DURABILITY
26 - 4.2.1 General
26 - 4.2.2 Additional requirements
26 - 4.3 EXPOSURE CLASSIFICATION
26 - 4.3.1 General
26 - 4.3.2 Concession for exterior exposure of a single surface
28 - 4.4 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS A1 AND A2
29 - 4 5 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS B1, B2 AND C
29 - 4.6 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATION U
29 - 4.7 ADDITIONAL REQUIREMENTS FOR ABRASION
30 - 4.8 ADDITIONAL REQUIREMENTS FOR FREEZING AND THAWING
30 - 4.9 RESTRICTIONS ON CHEMICAL CONTENT IN CONCRETE
30 - 4.10 REQUIREMENTS FOR COVER TO REINFORCING STEEL AND TENDONS
30 - 4.10.1 General
30 - 4.10.2 Cover for concrete placement
30 - 4.10.3 Cover for corrosion protection
33 - SECTION 5 DESIGN FOR FIRE RESISTANCE
33 - 5.1 SCOPE OF SECTION
33 - 5.2 DEFINITIONS
33 - 5.2.1 Fire-resistance level
33 - 5.2.2 Fire-resistance period
33 - 5.2.3 Fire-separating function
33 - 5.2.4 Hollow-core slab or wall
33 - 5.2.5 Insulation
33 - 5.2.6 Integrity
33 - 5.2.7 Loadbearing member
33 - 5.2.8 Ribbed slab
33 - 5.2.9 Structural adequacy
34 - 5.3 DESIGN REQUIREMENTS
34 - 5.3.1 General
34 - 5.3.2 Joints
34 - 5.3.3 Spalling of beams and columns
34 - 5.3.4 Methods for determining fire- resistance periods
34 - 5.4 FIRE-RESISTANCE PERIODS FOR BEAMS
34 - 5.4.1 Insulation and integrity for beams
34 - 5.4.2 Structural adequacy for beams incorporated in roof or floor systems
34 - 5.4.3 Structural adequacy for beams exposed to fire on all sides
35 - 5.4.4 Increasing fire-resistance periods of beams by insulating materials
36 - 5.5 FIRE-RESISTANCE PERIODS FOR SLABS
36 - 5.5.1 Insulation for slabs
37 - 5.5.2 Integrity for slabs
37 - 5.5.3 Structural adequacy for slabs
37 - 5.5.4 Increasing fire-resistance periods of slabs by insulating materials
39 - SECTION 6 DESIGN PROPERTIES OF MATERIALS
39 - 6.1 PROPERTIES OF CONCRETE
39 - 6.1.1 Strength
39 - 6.1.2 Modulus of elasticity
39 - 6.1.3 Density
39 - 6.1.4 Stress-strain curves
40 - 6.1.5 Poisson’s ratio
40 - 6.1.6 Coefficient of thermal expansion
40 - 6.1.7 Shrinkage
41 - 6.1.8 Creep
43 - 6.2 PROPERTIES OF REINFORCEMENT
43 - 6.2.1 Strength and ductility
44 - 6.2.2 Modulus of elasticity
44 - 6.2.3 Stress-strain curves
44 - 6.2.4 Coefficient of thermal expansion
44 - 6. 3 PROPERTIES OF TENDONS
44 - 6.3.1 Strength
45 - 6.3.2 Modulus of elasticity
45 - 6.3.3 Stress-strain curves
45 - 6.3.4 Relaxation of tendons
47 - SECTION 7 METHODS OF STRUCTURAL ANALYSIS
47 - 7.1 GENERAL
47 - 7.1.1 Methods of analysis
47 - 7.1.2 Definitions
50 - 7.2 SIMPLIFIED METHOD FOR REINFORCED CONTINUOUS BEAMS AND ONE-WAY SLABS
50 - 7.2.1 Application
50 - 7.2.2 Negative design moment
50 - 7.2.3 Positive design moment
50 - 7.2.4 Transverse design shear force
51 - 7.3 SIMPLIFIED METHOD FOR REINFORCED TWO- WAY SLABS SUPPORTED ON FOUR SIDES
51 - 7.3.1 Application
51 - 7.3.2 Design bending moments
51 - 7.3.3 Torsional moment at exterior corners
51 - 7.3.4 Load allocation
52 - 7.4 SIMPLIFIED METHOD FOR REINFORCED TWO- WAY SLAB SYSTEMS HAVING MULTIPLE SPANS
52 - 7.4.1 Application
53 - 7.4.2 Total static moment for a span
53 - 7.4.3 Design moments
54 - 7.4.4 Transverse distribution of the design bending moment
54 - 7.4.5 Moment transfer for shear in flat slabs
54 - 7.4.6 Shear forces in beam-and-slab construction
54 - 7.4.7 Openings in slabs
55 - 7.5 IDEALIZED FRAME METHOD FOR STRUCTURES INCORPORATING TWO-WAY SLAB SYSTEMS
55 - 7.5.1 Application
55 - 7.5.2 The idealized frame
55 - 7.5.3 Arrangement of vertical load for buildings
55 - 7.5.4 Calculation of action effects in the idealized frame
56 - 7.5.5 Distribution of bending moments between column and middle strips
56 - 7.5.6 Torsional moments
56 - 7.5.7 Openings in slabs
57 - 7.6 LINEAR ELASTIC ANALYSIS
57 - 7.6.1 Application
57 - 7.6.2 General
57 - 7.6.3 Span length
57 - 7.6.4 Arrangement of vertical live loads for buildings
58 - 7.6.5 Stiffness
58 - 7.6.6 Deflections
58 - 7.6.7 Secondary bending moments and shear resulting from prestress
58 - 7.6.8 Moment redistribution in reinforced concrete members for strength design
59 - 7.6.9 Moment redistribution in prestressed concrete members for strength design
59 - 7.6.10 Critical section for negative moments
59 - 7.6.11 Minimum transverse shear
60 - SECTION 8 BEAMS FOR STR ENGTH AND SERVICEABILITY
60 - 8.1 STRENGTH OF BEAMS IN BENDING
60 - 8.1.1 General
60 - 8.1.2 Basic principles
60 - 8.1.3 Design strength in bending
61 - 8.1.4 Minimum strength requirements
61 - 8.1.5 Stress in reinforcement and bonded tendons at ultimate strength
62 - 8.1.6 Stress in tendons not yet bonded
62 - 8.1.7 Spacing of reinforcement and tendons
62 - 8.1.8 Detailing of flexural reinforcement
64 - 8.2 STRENGTH OF BEAMS IN SHEAR
64 - 8.2.1 Application
64 - 8.2.2 Design shear strength of a beam
64 - 8.2.3 Tapered members
64 - 8.2.4 Maximum transverse shear near a support
65 - 8.2.5 Requirements for shear reinforcement
65 - 8.2.6 Shear strength limited by web crushing
65 - 8.2.7 Shear strength of a beam excluding shear reinforcement
67 - 8.2.8 Minimum shear reinforcement
67 - 8.2.9 Shear strength of a beam with minimum reinforcement
67 - 8.2.10 Contribution to shear strength by the shear reinforcement
67 - 8.2.11 Suspension reinforcement
67 - 8.2.12 Detailing of shear reinforcement
68 - 8.3 STRENGTH OF BEAMS IN TORSION
68 - 8.3.1 Application
69 - 8.3.2 Torsion redistribution
69 - 8.3.3 Torsional strength limited by web crushing
69 - 8.3.4 Requirements for torsional reinforcement
70 - 8.3.5 Torsional strength of a beam
70 - 8.3.6 Longitudinal torsional reinforcement
71 - 8.3.7 Minimum torsional reinforcement
71 - 8.3.8 Detailing of torsional reinforcement
71 - 8.4 LONGITUDINAL SHEAR IN BEAMS
71 - 8.4.1 Application
71 - 8.4.2 Design shear force
71 - 8.4.3 Design shear strength
72 - 8.4.4 Shear plane surface coefficients
72 - 8.4.5 Shear plane reinforcement
72 - 8.4.6 Minimum thickness of structural components
73 - 8.5 DEFLECTION OF BEAMS
73 - 8.5.1 General
73 - 8.5.2 Beam deflection by refined calculation
73 - 8.5.3 Beam deflection by simplified calculation
74 - 8.5.4 Deemed to comply span-to-depth ratios for reinforced beams
75 - 8.6 CRACK CONTROL OF BEAMS
75 - 8.6.1 Crack control for tension and flexure in reinforced beams
77 - 8.6.2 Crack control for flexure in prestressed beams
78 - 8.6.3 Crack control in the side face of beams
78 - 8.6.4 Crack control at openings and discontinuities
78 - 8.7 VIBRATION OF BEAMS
78 - 8.8 T-BEAMS AND L-BEAMS
78 - 8.8.1 General
78 - 8.8.2 Effective width of flange for strength and serviceability
78 - 8.9 SLENDERNESS LIMITS FOR BEAMS
78 - 8.9.1 General
78 - 8.9.2 Simply supported and continuous beams
78 - 8.9.3 Cantilever beams
79 - 8.9.4 Reinforcement for slender prestressed beams
80 - SECTION 9 DESIGN OF SLABS FOR STRENGTH AND SERVICEABILITY
80 - 9.1 STRENGTH OF SLABS IN BENDING
80 - 9.1.1 General
80 - 9.1.2 Reinforcement and tendon distribution in two-way flat slabs
80 - 9.1.3 Detailing of tensile reinforcement in slabs
83 - 9.1.4 Spacing of reinforcement and tendons
83 - 9.2 STRENGTH OF SLABS IN SHEAR
83 - 9.2.1 General
83 - 9.2.2 Application
84 - 9.2.3 Ultimate shear strength where M*v is zero
85 - 9.2.4 Ultimate shear strength where M*v is not zero
86 - 9.2.5 Minimum area of closed ties
86 - 9.2.6 Detailing of shear reinforcement
86 - 9.3 DEFLECTION OF SLABS
86 - 9.3.1 General
86 - 9.3.2 Slab deflection by refined calculation
87 - 9.3.3 Slab deflection by simplified calculation
87 - 9.3.4 Deemed to comply span-to-depth ratio for reinforced slabs
89 - 9.4 CRACK CONTROL OF SLABS
89 - 9.4.1 Crack control for flexure in reinforced slabs
91 - 9.4.2 Crack control for flexure in prestressed slabs
91 - 9.4.3 Crack control for shrinkage and temperature effects
92 - 9.4.4 Crack control in the vicinity of restraints
92 - 9.4.5 Crack control at openings and discontinuities
92 - 9.5 VIBRATION OF SLABS
92 - 9.6 MOMENT RESISTING WIDTH FOR ONE-WAY SLABS SUPPORTING CONCENTRATED LOADS
93 - 9.7 LONGITUDINAL SHEAR IN COMPOSITE SLABS
94 - SECTION 10 DESIGN OF COLUMNS FOR STRENGTH AND SERVICEABILITY
94 - 10.1 GENERAL
94 - 10.1.1 Design strength
94 - 10.1.2 Minimum bending moment
94 - 10.1.3 Definitions
94 - 10.2 DESIGN PROCEDURES
94 - 10.2.1 Design procedure using linear elastic analysis
94 - 10.2.2 Design procedure, incorporating secondary bending moments
94 - 10.2.3 Design procedure, using rigorous analysis
95 - 10.3 DESIGN OF SHORT COLUMNS
95 - 10.3.1 General
95 - 10.3.2 Short column with small compressive axial force
95 - 10.3.3 Short braced column with small bending moments
96 - 10.4 DESIGN OF SLENDER COLUMNS
96 - 10.4.1 General
96 - 10.4.2 Moment magnifier for a braced column
96 - 10.4.3 Moment magnifier for an unbraced column
97 - 10.4.4 Buckling load
97 - 10.5 SLENDERNESS
97 - 10.5.1 General
97 - 10.5.2 Radius of gyration
97 - 10.5.3 Effective length of a column
97 - 10. 5. 4 End restraint coefficients for regular rectangular framed structures
100 - 10.5.5 End restraint coefficients for any framed structure
101 - 10.5.6 End restraint provided by footings
101 - 10.6 STRENGTH OF COLUMNS IN COMBINED BENDING AND COMPRESSION
101 - 10.6.1 Basis of strength calculations
101 - 10.6.2 Rectangular stress block
101 - 10.6.3 Calculation of .....
101 - 10.6.4 Design based on each bending moment acting serparately
102 - 10.6.5 Design for biaxial bending and compression
102 - 10.7 REINFORCEMENT REQUIREMENTS FOR COLUMNS
102 - 10.7.1 Limitations on longitudinal steel
102 - 10.7.2 Bundled bars
103 - 10.7.3 Restraint of longitudinal reinforcement
104 - 10.7.4 Splicing of longitudinal reinforcement
105 - 10.8 TRANSMISSION OF AXIAL FORCE THROUGH FLOOR SYSTEMS
106 - SECTION 12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES AND BEARING SURFACES
106 - 12.1 DESIGN OF NON-FLEXURAL MEMBERS
106 - 12.1.1 General
106 - 12.1.2 Design based on strut and tie action
107 - 12.2.6 Quantity and distribution of reinforcement
107 - 12.3 BEARING SURFACES
108 - SECTION 13 STRESS DEVELOPMENT AND SPLICING OF REINFORCEMENT AND TENDONS
108 - 13.1 STRESS DEVELOPMENT IN REINFORCEMENT
108 - 13.1.1 General
108 - 13.1.2 Development length for bar in tension
109 - 13.1.3 Development length for a bar in compression
109 - 13.1.4 Development length of bundled bars
109 - 13.1.5 Development length of mesh in tension
109 - 13.2 SPLICING OF REINFORCEMENT
109 - 13.2.1 General
110 - 13.2.2 Lapped splices for bars in tension
110 - 13.2.3 Lapped splices for mesh in tension
110 - 13.2.4 Lapped splices for bars in compression
111 - 13.2.5 Lapped splices for bundled bars
111 - 13.3 STRESS DEVELOPMENT IN TENDONS
111 - 13.3.1 General
111 - 13.3.2 Development length of pretensioned tendons
111 - 13.3.3 Stress development in post- tensioned tendons by anchorages
111 - 13.4 COUPLING OF TENDONS
112 - SECTION 15 PLAIN CONCRETE MEMBERS
112 - 15.1 APPLICATION
112 - 15.2 DESIGN
112 - 15.2.1 Basic principles of strength design
112 - 15.2.2 Section properties
112 - 15.3 STRENGTH IN BENDING
112 - 15.4 STRENGTH IN SHEAR
112 - 15.4.1 One-way action
112 - 15.4.2 Two-way action
113 - 15.5 STRENGTH IN AXIAL COMPRESSION
113 - 15.6 STRENGTH IN COMBINED BENDING AND COMPRESSION
114 - SECTION 19 MATERIAL AND CONSTRUCTION REQUIREMENTS
114 - 19.1 MATERIAL AND CONSTRUCTION REQUIREMENTS FOR CONCRETE AND GROUT
114 - 19.1.1 Materials and limitations on constituents
114 - 19.1.2 Specification and manufacture of concrete
114 - 19.1.3 Handling, placing and compacting of concrete
114 - 19.1.4 Finishing of unformed concrete surfaces
115 - 19.1.5 Curing and protection of concrete
115 - 19.1.6 Sampling and testing for compliance
116 - 19.1.7 Rejection of concrete
116 - 19.1.8 Requirements for grout and grouting
117 - 19.2 MATERIAL AND CONSTRUCTION REQUIREMENTS FOR REINFORCING
117 - 19.2.1 Materials
117 - 19.2.2 Fabrication
117 - 19.2.3 Bending
118 - 19.2.4 Surface condition
118 - 19.2.5 Fixing
118 - 19.2.6 Lightning protection by reinforcement
119 - 19.4 CONSTRUCTION REQUIREMENTS FOR JOINTS AND EMBEDDED ITEMS
119 - 19.4.1 Location of construction joints
119 - 19.4.2 Embedded and other items not shown in the drawings
119 - 19.5 TOLERANCES FOR STRUCTURES AND MEMBERS
119 - 19.5.1 General
120 - 19.5.2 Tolerances for position and size of structures and members
120 - 19.5.3 Tolerance on position of reinforcement and tendons
120 - 19.6 FORMWORK
120 - 19.6.1 General
121 - 19.6.2 Stripping of forms and removal of formwork supports
124 - CHAPTER 2 STEEL STRUCTURES
125 - SECTION 1 SCOPE AND GENERAL
125 - 1.1 SCOPE AND APPLICATION
125 - 1.1.1 Scope
125 - 1.1.2 Application
125 - 1.2 REFERENCED DOCUMENTS
125 - 1.3 DEFINITIONS
128 - 1.4 NOTATION
138 - 1.5 USE OF ALTERNATIVE MATERIALS OR METHODS
138 - 1.5.1 General
138 - 1.5.2 Existing structures
138 - 1.6 DESIGN
138 - 1.6.1 Design data
138 - 1.6.2 Design details
139 - 1.7 CONSTRUCTION
140 - SECTION 2 MATERIALS
140 - 2.1 YIELD STRESS AND TENSILE STRENGTH USED IN DESIGN
140 - 2.1.1 Yield stress
140 - 2.1.2 Tensile strength
140 - 2.2 STRUCTURAL STEEL
140 - 2.2.1 Australian Standards
140 - 2.2.2 Acceptance of steels
140 - 2.2.3 Unidentified steel
140 - 2.3 FASTENERS
140 - 2.3.1 Steel bolts, nuts and washers
140 - 2.3.2 Equivalent high strength fasteners
141 - 2.3.3 Welds
141 - 2.3.4 Welded studs
141 - 2.3.5 Explosive fasteners
141 - 2.3.6 Anchor bolts
141 - 2.4 STEEL CASTINGS
146 - SECTION 3 GENERAL DESIGN REQUIREMENTS
146 - 3.1 DESIGN
146 - 3.1.1 Aim
146 - 3.1.2 Requirements
146 - 3.2 LOADS AND OTHER ACTIONS
146 - 3.2.1 Loads
146 - 3.2.2 Other actions
146 - 3.2.3 Design load combinations
146 - 3.2.4 Notional horizontal forces
147 - 3.3 STABILITY LIMIT STATE
147 - 3.4 STRENGTH LIMIT STATE
148 - 3.5 SERVICEABILITY LIMIT STATE
148 - 3.5.1 General
148 - 3.5.2 Method
148 - 3.5.3 Deflection limits
148 - 3.5.4 Vibration of beams
149 - 3.5.5 Bolt serviceability limit state
149 - 3.5.6 Corrosion protection
149 - 3.6 STRENGTH AND SERVICEABILITY LIMIT STATES BY LOAD TESTING
149 - 3.7 BRITTLE FRACTURE
149 - 3.8 FATIGUE
149 - 3.9 FIRE
149 - 3.10 EARTHQUAKE
149 - 3.11 OTHER DESIGN REQUIREMENTS
150 - SECTION 4 METHODS OF STRUCTURAL ANALYSIS
150 - 4.1 METHODS OF DETERMINING ACTION EFFECTS
150 - 4.1.1 General
150 - 4.1.2 Definitions
150 - 4.2 FORMS OF CONSTRUCTION ASSUMED FOR STRUCTURAL ANALYSIS
150 - 4.2.1 General
150 - 4.2.2 Rigid construction
150 - 4.2.3 Semi-rigid construction
150 - 4.2.4 Simple construction
150 - 4.2.5 Design of connections
151 - 4.3 ASSUMPTIONS FOR ANALYSIS
151 - 4.3.1 General
151 - 4.3.2 Span length
151 - 4.3.3 Arrangements of live loads for buildings
151 - 4.3.4 Simple construction
151 - 4.4 ELASTIC ANALYSIS
151 - 4.4.1 General
152 - 4.4.2 First-order elastic analysis
156 - 4.5 PLASTIC ANALYSIS
156 - 4.5.1 Application
156 - 4.5.2 Limitations
156 - 4.5.3 Assumptions of analysis
156 - 4.5.4 Second order effects
157 - 4.6 MEMBER BUCKLING ANALYSIS
157 - 4.6.1 General
157 - 4.6.2 Member elastic buckling load
157 - 4.6.3 Member effective length factor
160 - 4.7 FRAME BUCKLING ANALYSIS
160 - 4.7.1 General
160 - 4.7.2 In-plane frame buckling
162 - SECTION 5 MEMBERS SUBJECT TO BENDING
162 - 5.1 DESIGN FOR BENDING MOMENT
162 - 5.2 SECTION MOMENT CAPACITY FOR BENDING ABOUT A PRINCIPAL AXIS
162 - 5.2.1 General
163 - 5.2.2 Section slenderness
164 - 5.2.3 Compact sections
164 - 5.2.4 Non-compact sections
164 - 5.2.5 Slender sections
165 - 5.2.6 Elastic and plastic section moduli
165 - 5.3 MEMBER CAPACITY OF SEGMENTS WITH FULL LATERAL RESTRAINT
165 - 5.3.1 Member capacity
165 - 5.3.2 Segments with full lateral restraint
166 - 5.3.3 Critical section
166 - 5.4 RESTRAINTS
166 - 5.4.1 General
167 - 5.4.2 Restraints at a cross-section
169 - 5.4.3 Restraining elements
170 - 5.5 CRITICAL FLANGE
170 - 5.5.1 General
170 - 5.5.2 Segments with both ends restrained
170 - 5.5.3 Segments with one end unrestrained
170 - 5.6 MEMBER CAPACITY OF SEGMENTS WITHOUT FULL LATERAL RESTRAINT
170 - 5.6.1 Segments fully or partially restrained at both ends
172 - 5.6.2 Segments unrestrained at one end
174 - 5.6.3 Effective length
176 - 5.6.4 Design by buckling analysis
176 - 5.7 BENDING IN A NON-PRINCIPAL PLANE
176 - 5.7.1 Deflections constrained to a non-principal plane
176 - 5.7.2 Deflections unconstrained
176 - 5.8 SEPARATORS AND DIAPHRAGMS
176 - 5.9 DESIGN OF WEBS
176 - 5.9.1 General
177 - 5.9.2 Definition of web panel
177 - 5.9.3 Minimum thickness of web panel
177 - 5.10 ARRANGEMENT OF WEBS
177 - 5.10.1 Unstiffened webs
177 - 5.10.2 Load bearing stiffeners
177 - 5.10.3 Side reinforcing plates
177 - 5.10.4 Transversely stiffened webs
178 - 5.10.5 Webs with longitudinal and transverse stiffeners
178 - 5.10.6 Webs of members designed plastically
178 - 5.10.7 Openings in webs
178 - 5.11 SHEAR CAPACITY OF WEBS
178 - 5.11.1 Shear capacity
179 - 5.11.2 Approximately uniform shear stress distribution
179 - 5.11.3 Non-uniform shear stress distribution
179 - 5.11.4 Shear yield capacity
180 - 5.11.5 Shear buckling capacity
181 - 5.12 INTERACTION OF SHEAR AND BENDING
181 - 5.12.1 General
182 - 5.12.2 Proportioning method
182 - 5.12.3 Shear and bending interaction method
182 - 5.13 COMPRESSIVE BEARING ACTION ON THE EDGE OF A WEB
182 - 5.13.1 Dispersion of force to web
182 - 5.13.2 Bearing capacity
183 - 5.13.3 Bearing yield capacity
183 - 5.13.4 Bearing buckling capacity
184 - 5.13.5 Combined bending and bearing of rectangular and square hollow sections
186 - 5.14 DESIGN OF LOAD BEARING STIFFENERS
186 - 5.14.1 Yield capacity
187 - 5.14.2 Buckling capacity
187 - 5.14.3 Outstand of stiffeners
187 - 5.14.4 Fitting of load bearing stiffeners
188 - 5.14.5 Design for torsional end restraint
188 - 5.15 DESIGN OF INTERMEDIATE TRANSVERSE WEB STIFFENERS
188 - 5.15.1 General
188 - 5.15.2 Spacing
188 - 5.15.3 Minimum area
188 - 5.15.4 Buckling capacity
189 - 5.15.5 Minimum stiffness
189 - 5.15.6 Outstand of stiffeners
189 - 5.15.7 External forces
189 - 5.15.8 Connection of intermediate stiffeners to web
189 - 5.15.9 End posts
190 - 5.16 DESIGN OF LONGITUDINAL WEB STIFFENERS
190 - 5.16.1 General
190 - 5.16.2 Minimum stiffness
191 - SECTION 6 MEMBERS SUBJECT TO AXIAL COMPRESSION
191 - 6.1 DESIGN FOR AXIAL COMPRESSION
191 - 6.2 NOMINAL SECTION CAPACITY
191 - 6.2.1 General
191 - 6.2.2 Form factor
191 - 6.2.3 Plate element slenderness
192 - 6.2.4 Effective width
193 - 6.3 NOMINAL MEMBER CAPACITY
193 - 6.3.1 Definitions
193 - 6.3.2 Effective length
193 - 6.3.3 Nominal capacity of a member of constant cross-section
197 - 6.3.4 Nominal capacity of a member of varying cross-section
197 - 6.4 LACED AND BATTENED COMPRESSION MEMBERS
197 - 6.4.1 Design forces
197 - 6.4.2 Laced compression members
198 - 6.4.3 Battened compression member
199 - 6.5 COMPRESSION MEMBERS BACK TO BACK
199 - 6.5.1 Components separated
199 - 6.5.2 Components in contact
200 - 6.6 RESTRAINTS
200 - 6.6.1 Restraint systems
200 - 6.6.2 Restraining members and connections
200 - 6.6.3 Parallel braced compression members
201 - SECTION 7 MEMBERS SUBJECT TO AXIAL TENSION
201 - 7.1 DESIGN FOR AXIAL TENSION
201 - 7.2 NOMINAL SECTION CAPACITY
201 - 7.3 DISTRIBUTION OF FORCES
201 - 7.3.1 End connections providing uniform force distribution
201 - 7.3.2 End connections providing non-uniform force distribution
202 - 7.4 TENSION MEMBERS WITH TWO OR MORE MAIN COMPONENTS
202 - 7.4.1 General
202 - 7.4.2 Design forces for connections
203 - 7.4.3 Tension member composed of two components back-to-back
203 - 7.4.4 Laced tension member
203 - 7.4.5 Battened tension member
203 - 7.5 MEMBERS WITH PIN CONNECTIONS
204 - SECTION 8 MEMBERS SUBJECT TO COMBINED ACTIONS
204 - 8.1 GENERAL
204 - 8.2 DESIGN ACTIONS
204 - 8.3 SECTION CAPACITY
204 - 8.3.1 General
205 - 8.3.2 Uniaxial bending about the major principal x-axis
205 - 8.3.3 Uniaxial bending about the minor principal y-axis
206 - 8.3.4 Biaxial bending
206 - 8.4 MEMBER CAPACITY
206 - 8.4.1 General
206 - 8.4.2 In-plane capacity - elastic analysis
207 - 8.4.3 In-plane capacity - plastic analysis
208 - 8.4.4 Out-of-plane capacity
210 - 8.4.5 Biaxial bending capacity
210 - 8.4.6 Eccentrically loaded double bolted or welded single angles in trusses
212 - SECTION 9 CONNECTIONS
212 - 9.1 GENERAL
212 - 9.1.1 Requirements for connections
212 - 9.1.2 Classification of connections
212 - 9.1.3 Design of connections
213 - 9.1.4 Minimum design actions on connections
214 - 9.1.5 Intersections
214 - 9.1.6 Choice of fasteners
214 - 9.1.7 Combined connections
214 - 9.1.8 Prying forces
214 - 9.1.9 Connection components
214 - 9.1.10 Deductions for fastener holes
215 - 9.1.11 Hollow section connections
215 - 9.2 DEFINITIONS
216 - 9.3 DESIGN OF BOLTS
216 - 9.3.1 Bolts and bolting category
216 - 9.3.2 Bolt strength limit states
218 - 9.3.3 Bolt serviceability limit state
219 - 9.4 ASSESSMENT OF THE STRENGTH OF A BOLT GROUP
219 - 9.4.1 Bolt group subject to in-plane loading
219 - 9.4.2 Bolt group subject to out-of-plane loading
219 - 9.4.3 Bolt group subject to combinations of in-plane and out-of-plane loadings
219 - 9.5 DESIGN OF A PIN CONNECTION
219 - 9.5.1 Pin in shear
219 - 9.5.2 Pin in bearing
220 - 9.5.3 Pin in bending
220 - 9.5.4 Ply in bearing
220 - 9.6 DESIGN DETAILS FOR BOLTS AND PINS
220 - 9.6.1 Minimum pitch
220 - 9.6.2 Minimum edge distance
221 - 9.6.3 Maximum pitch
221 - 9.6.4 Maximum edge distance
221 - 9.6.5 Holes
221 - 9.7 DESIGN OF WELDS
221 - 9.7.1 Scope
221 - 9.7.2 Complete and incomplete penetration butt welds
224 - 9.7.3 Fillet welds
229 - 9.7.4 Plug and slot welds
229 - 9.7.5 Compound weld
230 - 9.8 ASSESSMENT OF THE STRENGTH OF A WELD GROUP
230 - 9.8.1 Weld group subject to in-plane loading
230 - 9.8.2 Weld group subject to out-of-plane loading
231 - 9.8.3 Weld group subject to in-plane and out-of-plane loading
231 - 9.8.4 Combination of weld types
231 - 9.9 PACKING IN CONSTRUCTION
232 - SECTION 14 FABRICATION
232 - 14.1 GENERAL
232 - 14.2 MATERIAL
232 - 14.2.1 General
232 - 14.2.2 Identification
232 - 14.3 FABRICATION PROCEDURES
232 - 14.3.1 Methods
232 - 14.3.2 Full contact splices
232 - 14.3.3 Cutting
233 - 14.3.4 Welding
233 - 14.3.5 Holing
234 - 14.3.6 Bolting
235 - 14.3.7 Pinned connection
235 - 14.4 TOLERANCES
235 - 14.4.1 General
235 - 14.4.2 Notation
235 - 14.4.3 Cross-section
238 - 14.4.4 Compression member
238 - 14.4.5 Beam
238 - 14.4.6 Tension member
240 - SECTION 15 ERECTION
240 - 15.1 GENERAL
240 - 15.1.1 Rejection of an erected item
240 - 15.1.2 Safety during erection
240 - 15.1.3 Equipment support
240 - 15.1.4 Reference temperature
240 - 15.2 ERECTION PROCEDURES
240 - 15.2.1 General
241 - 15.2.2 Delivery, storage and handling
241 - 15.2.3 Assembly and alignment
241 - 15.2.4 Assembly of a connection involving tensioned bolts
242 - 15.2.5 Methods of tensioning
243 - 15.3 TOLERANCES
243 - 15.3.1 Location of anchor bolts
244 - 15.3.2 Column base
245 - 15.3.3 Plumbing of a compression member
245 - 15.3.4 Column splice
245 - 15.3.5 Level and alignment of a beam
245 - 15.3.6 Position of a tension member
245 - 15.3.7 Overall building dimensions
247 - 15.4 INSPECTION OF BOLTED CONNECTIONS
247 - 15.4.1 Tensioned bolts
247 - 15.4.2 Damaged items
247 - 15.5 GROUTING AT SUPPORTS
247 - 15.5.1 Compression member base or beam
247 - 15.5.2 Grouting
248 - APPENDIX B SUGGESTED DEFLECTION LIMITS
248 - B1 SUGGESTED VERTICAL DEFLECTION LIMITS FOR BEAMS
248 - B2 SUGGESTED HORIZONTAL DEFLECTION LIMITS
249 - CHAPTER 3 TIMBER STRUCTURES - DESIGN
250 - SECTION 1 SCOPE AND GENERAL
250 - 1.1 SCOPE AND APPLICATION
250 - 1.1.1 Scope
250 - 1.1.2 Application
250 - 1.2 REFERENCED DOCUMENTS
250 - 1.3 NEW MATERIALS AND METHODS
250 - 1.4 TIMBER
250 - 1.4.1 General
251 - 1.4.2 Identification
251 - 1.4.3 Change of grade
251 - 1.4.4 Special provisions
251 - 1.4.5 Treated timber
251 - 1.5 GENERAL DESIGN CONSIDERATIONS
251 - 1.5.1 Loads
252 - 1.5.2 Design methods
253 - 1.5.3 Timber dimensions for engineering calculations
254 - 1.8 DEFINITIONS
254 - 1.8.1 Administrative definitions
255 - 1.8.2 Technical definitions
257 - 1.9 NOTATION
257 - 1.10 UNITS
258 - SECTION 2 DESIGN PROPERTIES OF STRUCTURAL TIMBER ELEMENTS
258 - 2.1 GENERAL
258 - 2.1.1 General procedure
258 - 2.1.2 Member design capacity
258 - 2.1.3 Member stiffness
258 - 2.2 DESIGN PROPERTIES
258 - 2.2.1 General
258 - 2.2.2 Properties
264 - 2.3 CAPACITY FACTOR
268 - 2.4 MODIFICATION FACTORS
268 - 2.4.1 Duration of load
271 - 2.4.2 Moisture condition
271 - 2.4.3 Temperature
271 - 2.4.4 Length and position of bearing
272 - 2.4.5 Strength sharing between parallel members
274 - 2.4.6 Size factor
275 - 2.4.7 Stability factor
276 - SECTION 3 DESIGN CAPACITY OF BASIC STRUCTURAL MEMBERS
276 - 3.1 GENERAL
276 - 3.2 BEAM DESIGN
276 - 3.2.1 Bending strength
277 - 3.2.2 Effective span
277 - 3.2.3 Slenderness coefficient for lateral buckling under bending
280 - 3.2.4 Stability factor
282 - 3.2.5 Flexural shear strength
282 - 3.2.6 Bearing strength
284 - 3.2.7 Strength of notched beams
284 - 3.2.8 Concentrated loads and partial area loads on grid systems
284 - 3.3 COLUMN DESIGN
284 - 3.3.1 Compressive strength
285 - 3.3.2 Slenderness coefficient for lateral buckling under compression
287 - 3.3.3 Stability factor
288 - 3.3.4 Strength of notched columns
288 - 3.3.5 Spaced columns
288 - 3.4 TENSION MEMBER DESIGN
288 - 3.4.1 Design tensile capacity parallel to grain
288 - 3.4.2 Notched tension members
288 - 3.6 COMBINED BENDING AND AXIAL ACTIONS
288 - 3.6.1 Combined bending and compression
289 - 3.6.2 Combined bending and tension
290 - SECTION 4 DESIGN CAPACITY OF JOINTS IN TIMBER STRUCTURES
290 - 4.1 GENERAL
290 - 4.1.1 Scope of Section
290 - 4.1.2 Joint groups
290 - 4.1.3 Joint types
291 - 4.1.4 Timber grade
291 - 4.1.5 Tendency to split
292 - 4.1.6 Eccentric joints
292 - 4.2 DESIGN OF NAILED JOINTS
292 - 4.2.1 General
292 - 4.2.2 Characteristic capacities for nails
297 - 4.2.3 Design capacity for nailed joints
301 - 4.2.4 Spacing, edge and end distances
301 - 4.2.5 Nail length and timber thickness
301 - 4.2.6 Avoidance of splitting
302 - 4.4 DESIGN OF BOLTED JOINTS
302 - 4.4.1 General
302 - 4.4.2 Characteristic capacities for bolts
311 - 4.4.3 Design capacity for bolted connections
313 - 4.4.4 Bolt spacings, edge and end distances
315 - 4.4.5 Washers
315 - 4.4.6 Eccentric joints
317 - SECTION 5 PLYWOOD
317 - 5.1 GENERAL
317 - 5.2 DESIGN PROPERTIES
317 - 5.2.1 Characteristic strengths and elastic moduli
317 - 5.2.2 Capacity factor
318 - 5.3 MODIFICATION FACTORS
318 - 5.3.1 General
318 - 5.3.2 Duration of load
318 - 5.3.3 Moisture condition
318 - 5.3.4 Temperature
318 - 5.3.5 Plywood assembly factor
319 - 5.4 LOADING NORMAL TO THE PLANE OF THE PLYWOOD PANEL
319 - 5.4.1 General
319 - 5.4.2 Bending strength
320 - 5.4.3 Shear strength (interlamina shear)
320 - 5.4.4 Bearing strength
321 - 5.4.5 Deflection in bending
322 - SECTION 7 GLUED-LAMINATED TIMBER CONSTRUCTION
322 - 7.1 GENERAL
322 - 7.2 DESIGN
322 - 7.3 DESIGN PROPERTIES
322 - 7.3.1 Characteristic strengths and elastic moduli
322 - 7.3.2 Capacity factor
323 - 7.3.3 Non-GL-grade properties
323 - 7.4 MODIFICATION FACTORS
323 - 7.4.1 General
323 - 7.4.2 Duration of load
323 - 7.4.3 Strength sharing between parallel members
323 - 7.4.4 Size factor
323 - 7.4.5 Stability factor
325 - SECTION 8 STRUCTURAL LAMINATED VENEER LUMBER
325 - 8.1 GENERAL
325 - 8.2 DESIGN
325 - 8.3 PROPERTIES
325 - 8.3.1 Characteristic strengths and elastic moduli
325 - 8.3.2 Modulus of rigidity
325 - 8.3.3 Section properties
325 - 8.3.4 Capacity factors
326 - 8.4 MODIFICATION FACTORS
326 - 8.4.1 General
326 - 8.4.2 Duration of load
326 - 8.4.3 Moisture condition
326 - 8.4.4 Temperature
326 - 8.4.5 Length and position of bearing
326 - 8.4.6 Strength sharing between parallel members
326 - 8.4.7 Size factor
327 - 8.4.8 Stability factor
327 - 8.5 JOINT DESIGN
327 - 8.5.1 General
327 - 8.5.2 Joint group
327 - 8.5.3 Characteristic fastener capacities
328 - APPENDIX B GUIDELINES FOR SERVICEABILITY
328 - B1 GENERAL
328 - B2 SERVICEABILITY CONSIDERATIONS
333 - APPENDIX F NOTATION AND FACTORS
344 - APPENDIX H DESIGN WITH IN-GRADE TESTED MATERIAL
344 - H1 GENERAL
344 - H2 MGP GRADES
348 - CHAPTER 4 MASONRY IN STRUCTURES
349 - SECTION 1 SCOPE AND GENERAL
349 - 1.1 SCOPE AND APPLICATION
349 - 1.1.1 Scope
349 - 1.1.2 Application
350 - 1.5 DEFINITIONS
350 - 1.5.1 Administrative definitions
350 - 1.5.2 Technical definitions
357 - 1.6 NOTATION
365 - SECTION 2 PERFORMANCE REQUIREMENTS FOR DESIGN
365 - 2.1 SCOPE OF SECTION
365 - 2.2 AIM
365 - 2.3 PERFORMANCE REQUIREMENTS
365 - 2.3.1 Durability
365 - 2.3.2 Fire resistance
365 - 2.3.3 Serviceability
365 - 2.3.4 Strength
365 - 2.3.5 Stability
365 - 2.3.6 Other requirements
365 - 2.4 DESIGN REQUIREMENTS
365 - 2.4.1 Design for durability
365 - 2.4.2 Design for fire resistance
366 - 2.4.3 Design for serviceability
366 - 2.4.4 Design for strength
366 - 2.4.5 Design for stability
366 - 2.4.6 Design for other requirements
366 - 2.5 SERVICEABILITY, STRENGTH AND STABILITY
366 - 2.5.1 General
366 - 2.5.2 Design for serviceability
367 - 2.5.3 Design for strength
367 - 2.5.4 Design for stability
367 - 2.6 LOADS AND LOAD COMBINATIONS
367 - 2.6.1 Loads, and other forces and actions
368 - 2.6.2 Design load combinations
368 - 2.6.3 Design loads for lateral supporting members
368 - 2.6.4 Design loads for connections to lateral supports
368 - 2.7 OTHER DESIGN REQUIREMENTS
368 - 2.7.1 General
368 - 2.7.2 Design for water penetration
368 - 2.7.3 Design for accidental damage
368 - 2.7.4 Masonry under construction
368 - 2. 8 THERMAL INSULATION
368 - 2.9 SOUND INSULATION
369 - SECTION 3 DESIGN PROPERTIES
369 - 3.1 SCOPE OF SECTION
369 - 3.2 MASONRY UNITS
369 - 3.3 MASONRY
369 - 3.3.1 General
369 - 3.3.2 Compressive strength
370 - 3.3.3 Flexural tensile strength
371 - 3.3.4 Shear strength
371 - 3.3.5 Shear factor
372 - 3.3.6 Elastic properties of masonry
372 - 3.4 TIES AND ACCESSORIES
373 - 3.5 GROUT
373 - 3.6 REINFORCEMENT
373 - 3.6.1 Strength
373 - 3.6.2 Modulus of elasticity
374 - 3.6.3 Stress-strain curves
375 - SECTION 4 GENERAL DESIGN ASPECTS
375 - 4.1 SCOPE OF SECTION
375 - 4.2 MEMBERS OF MIXED CONSTRUCTION
375 - 4.3 CHASES, HOLES AND RECESSES
375 - 4.4 CAPACITY REDUCTION FACTORS
376 - 4.5 CROSS-SECTION PROPERTIES
376 - 4.5.1 Bedded thickness
376 - 4.5.2 Effective width of compression faces and flanges
376 - 4.5.3 Structural end of a masonry member
377 - 4.5.4 Bedded area
377 - 4.5.5 Combined cross-sectional area
377 - 4.5.6 Design cross-sectional area
377 - 4.5.7 Grout area
377 - 4.5.8 Section modulus and second moment of area
377 - 4.5.9 Chases, holes and recesses
377 - 4.6 DESIGN FOR ROBUSTNESS
377 - 4.6.1 General
378 - 4.6.2 Maximum slenderness of masonry members
379 - 4.7 PREVENTION OF MOISTURE PENETRATION
379 - 4.7.1 Cavities
379 - 4.7.2 Weep holes
379 - 4.7.3 Damp-proof courses and flashings
379 - 4.7.4 Single leaf and solid walls
381 - 4.8 CONTROL JOINTS
381 - 4.8.1 General
381 - 4.8.2 Detailing
381 - 4.9 MORTAR JOINTS
381 - 4.9.1 Thickness
381 - 4.9.2 Finishing
381 - 4.10 WALL TIES
382 - 4.11 BONDING, TYING AND SUPPORTING
382 - 4.11.1 General
382 - 4.11.2 Bonding with masonry header units
382 - 4.11.3 Tying with connectors
383 - 4.11.4 Fixing to supporting structures
383 - 4.12 ARCHES AND LINTELS
383 - 4.13 INTERACTION BETWEEN MASONRY MEMBERS AND SLABS, BEAMS OR COLUMNS
383 - 4.14 CORBELLING
383 - 4.14.1 Corbels normal to the plane of the wall
384 - 4.14.2 Corbels in the plane of the wall
384 - 4.15 ATTACHMENT TO FACE OF WALLS
385 - SECTION 5 DESIGN FOR DURABILITY
385 - 5.1 SCOPE OF SECTION
385 - 5.2 EXPOSURE ENVIRONMENTS
385 - 5.2.1 Mild environment
385 - 5.2.2 Exterior environment
385 - 5.2.3 Interior environment
385 - 5.2.4 Marine environment
385 - 5.2.5 Severe marine environment
385 - 5.3 MASONRY UNITS
385 - 5.4 MORTAR
386 - 5.5 BUILT-IN COMPONENTS
386 - 5.6 GROUT
386 - 5.7 REINFORCEMENT AND TENDONS
386 - 5.7.1 General
386 - 5.7.2 Reinforcement and tendons in grouted cavities and cores
387 - 5.7.3 Reinforcement and tendons embedded in mortar joints
387 - 5.7.4 Unbonded tendons in cavities and cores
390 - SECTION 7 STRUCTURAL DESIGN OF UNREINFORCED MASONRY
390 - 7.1 SCOPE OF SECTION
390 - 7.2 GENERAL BASIS OF DESIGN
390 - 7.3 DESIGN FOR MEMBERS IN COMPRESSION
390 - 7.3.1 General
391 - 7.3.2 Basic compressive capacity
391 - 7.3.3 Design by simple rules
394 - 7.3.4 Design by refined calculation
402 - 7.3.5 Concentrated loads
405 - 7.4 DESIGN FOR MEMBERS IN BENDING
405 - 7.4.1 General
406 - 7.4.2 Design for vertical bending
406 - 7.4.3 Design for horizontal bending
408 - 7.4.4 Design for two-way bending
412 - 7.5 DESIGN FOR MEMBERS IN SHEAR
412 - 7.5.1 Shear capacity
413 - 7.5.2 Shear strength on a vertical plane
413 - 7.5.3 Shear connectors
414 - 7.6 DESIGN OF SHEAR WALLS
414 - 7.6.1 General
414 - 7.6.2 Two or more shear walls acting together
414 - 7.6.3 Design for compression and in- plane lateral forces
414 - 7.7 DESIGN OF MASONRY VENEER WALLS
414 - 7.7.1 General
415 - 7.7.2 Wall ties with flexible structural backing
416 - 7.7.3 Wall ties with stiff structural backing
416 - 7.8 DESIGN OF CAVITY WALLS
416 - 7.8.1 General
416 - 7.8.2 Compressive load capacity with both leaves loaded
417 - 7.8.3 Lateral bending capacity
417 - 7.8.4 Wall ties
417 - 7.9 DESIGN OF DIAPHRAGM WALLS
417 - 7.9.1 General
417 - 7.9.2 Design for lateral loads
417 - 7.9.3 Diaphragms
418 - SECTION 8 STRUCTURAL DESIGN OF REINFORCED MASONRY
418 - 8.1 SCOPE OF SECTION
418 - 8.2 GENERAL BASIS OF DESIGN
418 - 8.3 GENERAL REINFORCEMENT REQUIREMENT
418 - 8.3.1 General
419 - 8.3.2 Main reinforcement
419 - 8.3.3 Secondary reinforcement
419 - 8.3.4 Reinforcement detailing, cover and protection
419 - 8.3.5 Close-spaced reinforcement for increased ductility in earthquakes
419 - 8.3.6 Wide-spaced reinforcement
419 - 8.4 DESIGN FOR MEMBERS IN COMPRESSION
420 - 8.5 DESIGN FOR MEMBERS IN BENDING
421 - 8.6 DESIGN FOR MEMBERS IN SHEAR
421 - 8.6.1 General
421 - 8.6.2 In-plane shear in walls
423 - 8.6.3 Out-of-plane shear in walls
423 - 8.6.4 Shear in beams
423 - 8.7 DESIGN FOR MEMBERS IN TENSION
424 - 8.8 DESIGN FOR MEMBERS IN COMBINED BENDING AND COMPRESSION
424 - 8.9 DESIGN FOR MEMBERS IN COMBINED BENDING AND TENSION
425 - CHAPTER 5 STRUCTURAL DESIGN ACTIONS
426 - AS/NZS 1170.0-2002 STRUCTURAL DESIGN ACTIONS - GENERAL PRINCIPLES
426 - SECTION 1 SCOPE AND GENERAL
426 - 1.1 SCOPE
427 - 1.4 DEFINITIONS
427 - 1.4.1 Action
427 - 1.4.2 Action effects (internal effects of actions, load effects)
427 - 1.4.3 Combination of actions
427 - 1.4.4 Design action effect
427 - 1.4.5 Design capacity
427 - 1.4.6 Design situation
427 - 1.4.7 Imposed action
427 - 1.4.8 Limit sates
427 - 1.4.9 Limit states, serviceability
427 - 1.4.10 Limit states, ultimate
427 - 1.4.11 Load
427 - 1.4.12 Permanent action
427 - 1.4.13 Proof testing
428 - 1.4.14 Prototype testing
428 - 1.4.15 Reliability
428 - 1.4.16 Serviceability
428 - 1.4.17 Shall
428 - 1.4.18 Should
428 - 1.4.19 Structure
428 - 1.4.20 Structural element
428 - 1.4.21 Structural robustness
428 - 1.4.22 Special study
428 - 1.5 NOTATAION
430 - SECTION 2 STRUCTURAL DESIGN PROCEDURE
430 - 2.1 GENERAL
430 - 2.2 ULTIMATE LIMIT STATES
430 - 2.3 SERVICEABILITY LIMIT STATES
431 - SECTION 4 COMBINATIONS OF ACTIONS
431 - 4.1 GENERAL
431 - 4.2 COMBINATIONS OF ACTIONS FOR ULTIMATE LIMIT STATES
431 - 4.2.1 Stability
432 - 4.2.2 Strength
433 - 4.2.3 Combinations for snow, liquid pressure,rainwater ponding, ground water and earth pressure
433 - 4.2.4 Combination of actions for fire
433 - 4.3 COMBINATIONS OF ACTIONS FOR SERVICEABILITY LIMIT STATES
433 - 4.4 CYCLIC ACTIONS
434 - SECTION 6 STRUCTURAL ROBUSTNESS
434 - 6.1 GENERAL
434 - 6.2 LOAD PATHS
434 - 6.2.1 General
434 - 6.2.2 Minimum resistance
434 - 6.2.3 Minimum lateral resistance of connections and ties
434 - 6.2.4 Diaphragms
434 - 6.2.5 Walls
435 - SECTION 7 CONFIRMATION METHODS
435 - 7.1 GENERAL
435 - 7.2 ULTIMATE LIMIT STATES
435 - 7.2.1 Stability
435 - 7.2.2 Strength
435 - 7.3 SERVICEABILITY LIMIT STATES
436 - APPENDIX C - GUIDELINES FOR SERVICEABILITY LIMIT STATES
439 - APPENDIX D - FACTORS FOR USE WITH AS 1170.4-1993
439 - D1 GENERAL
439 - D2 NOTATION
439 - D3 COMBINATIONS
439 - D4 STRUCTURE TYPES (I, II AND III) AND IMPORTANCE FACTOR (I)
439 - D5 PROBAILITY FACTOR
440 - D6 EARTHQUAKE LOADS
440 - D7 EARTHQUAKE DESIGN CATEGORY
441 - AS/NZS 1170.1-2002 STRUCTURAL DESIGN ACTIONS - PERMANENT, IMPOSED AND OTHE ACTIONS
441 - SECTION 1 SCOPE AND GENERAL
441 - 1.1 SCOPE
441 - 1.5 DEFINITIONS
441 - 1.5.1 Imposed action
441 - 1.5.2 Load
441 - 1.5.3 Permanent action
441 - 1.5.4 Design working life
441 - 1.5.5 Tributary area
441 - 1.5.6 Variable actions
441 - 1.6 NOTATION
442 - SECTION 2 PERMANENT ACTIONS
442 - 2.1 GENERAL
442 - 2.2 CALCULATION OF SELF-WEIGHT
442 - 2.3 PROVISION FOR PARTITIONS
442 - 2.4 REMOVABLE ITEMS
443 - SECTION 3 IMPOSED ACTIONS
443 - 3.1 GENERAL
443 - 3.2 CONCENTRATED ACTIONS
443 - 3.3 PARTIAL LOADING
443 - 3.4 FLOORS
443 - 3.4.1 Imposed floor actions
446 - 3.4.2 Reduction of uniformly distributed imposed actions
447 - 3.5 ROOFS AD SUPPORTING ELEMENTS
447 - 3.5.1 Roofs
448 - 3.5.2 Roof trusses, ceilings, skylights and similar structures
448 - 3.6 BARRIERS
450 - 3.7 ACTIONS FROM INSTALLED CRANES, HOISTS, LIFTS AND MACHINERY
450 - 3.7.1 General
450 - 3.7.2 Vertical actions
451 - 3.7.3 Horizontal actions on crane rails
451 - 3.8 CAR PARKS
452 - 3.9 GRANDSTANDS
453 - APPENDIX A - UNIT WEIGHTS OF MATERIALS
456 - AS/NZS 1170.2-2002 STRUCTURAL DESIGN ACTIONS - WIND ACTIONS
456 - SECTION 1 GENERAL
456 - 1.1 SCOPE
456 - 1.5 UNITS
457 - SECTION 2 CALCULATION OF WIND ACTIONS
457 - 2.1 GENERAL
457 - 2.2 SITE WIND SPEED
457 - 2.3 DESIGN WIND SPEED
460 - 2.4 DESIGN WIND PRESSURE AND DISTRIBUTED FORCES
460 - 2.4.1 Design wind pressures
460 - 2.4.2 Design wind distributed forces
460 - 2.5 WIND ACTIONS
460 - 2.5.1 General
460 - 2.5.2 Directions to be considered
460 - 2.5.3 Forces on surfaces or structural elements
461 - 2.5.4 Forces and moments on complete structures
461 - 2.5.5 Performance of fatigue-sensitive elements
461 - 2.5.6 Serviceability of wind-sensitive structures
462 - SECTION 3 REGIONAL WIND SPEEDS
462 - 3.1 GENERAL
462 - 3.2 REGIONAL WIND SPEEDS
462 - 3.3. WIND DIRECTION MULTIPLIER
462 - 3.3.1 Regions A and W
462 - 3.3.2 Regions B, C and D
463 - 3.4 FACTORS FOR REGIONS C AND D
465 - SECTION 4 SITE EXPOSURE MULTIPLIERS
465 - 4.1 GENERAL
465 - 4.2 TERRAIN/HEIGHT MULTIPLIER
465 - 4.2.1 Terrain category definitions
465 - 4.2.2 Determination of terrain/height mutliplier
466 - 4.2.3 Changes in terrain category
468 - 4.3 SHIELDING MULTIPLIER
468 - 4.3.1 General
469 - 4.3.2 Buildings providing shielding
469 - 4.3.3 Shielding parameter
469 - 4.4 TOPOGRAPHIC MULTIPLIER
469 - 4.4.1 General
470 - 4.4.2 Hill-shape multiplier
473 - SECTION 5 AERODYNAMIC SHAPE FACTOR
473 - 5.1 GENERAL
474 - 5.2 EVALUATION OF AERODYNAMIC SHAPE FACTOR
475 - 5.3 INTERNAL PRESSURE FOR ENCLOSED RECTANGULAR BUILDINGS
475 - 5.3.1 General
475 - 5.3.2 Openings
475 - 5.3.3 Dominant openings
477 - 5.4 EXTERNAL PRESSURES FOR ENCLOSED RECTANGULAR BUILDINGS
477 - 5.4.1 External pressure coefficients
480 - 5.4.2 Area reduction factor (Ka) for roofs and side walls
480 - 5.4.3 Combination factor
481 - 5.4.4 Local pressure factor (Kl) for cladding
484 - 5.4.5 Permeable cladding reduction factor (Kp) for roofs and side walls
484 - 5.5 FRICTIONAL DRAG FORCES FOR ENCLOSED BUILDINGS
485 - SECTION 6 DYNAMIC RESPONSE FACTOR
485 - 6.1 EVALUATION OF DYNAMIC RESPONSE FACTOR
485 - APPENDIX A - DEFINITIONS
489 - APPENDIX B - NOTATION
495 - AS 1170.4-1993 MINIMUM DESIGN LOADS ON STRUCTURES - EARTHQUAKE LOADS
495 - SECTION 1 SCOPE AND GENERAL
495 - 1.1 SCOPE
495 - 1.2 REFERENCED DOCUMENTS
495 - 1.3 DEFINITIONS
495 - 1.3.1 Acceleration coefficient
495 - 1.3.2 Base
496 - 1.3.3 Base shear
496 - 1.3.4 Bearing wall system
496 - 1.3.5 Braced frame
496 - 1.3.6 Building frame system
496 - 1.3.7 Concentric braced frame
496 - 1.3.8 Diaphragm
496 - 1.3.9 Dual system
496 - 1.3.10 Ductility
496 - 1.3.11 Drift
496 - 1.3.12 Earthquake design category
496 - 1.3.13 Earthquake resisting system
496 - 1.3.14 Eccentric braced frame
496 - 1.3.15 Hazardous facility
496 - 1.3.16 Horizontal bracing system
496 - 1.3.17 Intermediate moment resisting frame (IMRF)
496 - 1.3.18 Loadbearing wall
496 - 1.3.19 Moment resisting frame system
496 - 1.3.20 Non-loadbearing wall
496 - 1.3.21 Ordinary moment resisting frame (OMRF)
497 - 1.3.22 Orthogonal effect
497 - 1.3.23 P-delta effect
497 - 1.3.24 Shear wall
497 - 1.3.25 Soft storey
497 - 1.3.26 Space frame
497 - 1.3.27 Special moment resisting frame (SMRF)
497 - 1.3.28 Static eccentricity
497 - 1.3.29 Storey
497 - 1.3.30 Storey drift
497 - 1.3.31 Storey drift ratio
497 - 1.3.32 Storey height
497 - 1.3.33 Storey shear
497 - 1.3.34 Storey strength
497 - 1.3.35 Structure
497 - 1.3.36 Structural base
497 - 1.3.37 Structure classification
497 - 1.3.38 Vertical load-carrying frame
497 - 1.3.39 Weak storey
497 - 1.4 NOTATION
499 - 1.5 METHODS OF DETERMINATION OF EARTHQUAKE LOADS
499 - 1.6 EARTHQUAKE LOAD COMBINATIONS
499 - 1.6.1 Limit states design
499 - 1.6.2 Permissible stress design
500 - SECTION 2 GENERAL REQUIREMENTS
500 - 2.1 GENERAL
500 - 2.2 STRUCTURE CLASSIFICATION
500 - 2.2.1 General
500 - 2.2.2 Domestic structures
500 - 2.2.3 General structures
500 - 2.3 ACCELERATION COEFFICIENT
504 - 2.4 SITE FACTOR
505 - 2.5 IMPORTANCE FACTOR
505 - 2.6 EARTHQUAKE DESIGN CATEGORY
505 - 2.7 REQUIREMENTS FOR GENERAL STRUCTURES
505 - 2.7.1 General
506 - 2.7.2 General structures of earthquake Design Category A
506 - 2.7.3 General structures of earthquake Design Category B
506 - 2.7.4 General structures of earthquake Design Category C
506 - 2.7.5 General structures of earthquake Design Category D
507 - 2.7.6 General structures of earthquake Design Category E
507 - 2.8 STRUCTURAL SYSTEMS OF BUILDINGS
508 - 2.9 CONFIGURATION
508 - 2.9.1 General
508 - 2.9.2 Plan configuration
508 - 2.9.3 Vertical configuration
509 - 2.10 DEFLECTION AND DRIFT LIMITS
509 - 2.10.1 Portion of structures
509 - 2.10.2 Adjacent structures
510 - SECTION 3 DOMESTIC STRUCTURES
510 - 3.1 GENERAL
510 - 3.2 REQUIREMENTS FOR EARTHQUAKE DESIGN CATEGORIES
510 - 3.2.1 Earthquake Design Category H1
510 - 3.2.2 Earthquake Design Category H2
510 - 3.2.3 Earthquake Design Category H3
510 - 3.3 STRUCTURAL DETAILING REQUIREMENTS FOR DOMESTIC STRUCTURES
510 - 3.3.1 General
510 - 3.3.2 Wall anchorage
510 - 3.4 STATIC ANALYSIS FOR NON-DUCTILE DOMESTIC STRUCTURES OF EARTHQUAKE DESIGN CATEGORY H3
510 - 3.4.1 Horizontal forces
510 - 3.4.2 Earthquake base shear
511 - 3.4.3 Vertical distribution of horizontal earthquake forces
511 - 3.4.4 Torsional effects
511 - 3.5 NON-STRUCTURAL COMPONENTS
512 - SECTION 4 STRUCTURA L DETAILING REQUIREMENTS FOR GENERAL STRUCTURES
512 - 4.1 GENERAL
512 - 4.2 STRUCTURAL DETAILING REQUIREMENTS FOR STRUCTURES OF EARTH-QUAKE DESIGN CATEGORY A
512 - 4.2.1 Ductile structures
512 - 4.2.2 Non-ductile structures
512 - 4.3 STRUCTURAL DETAILING REQUIREMENTS FOR STRUCTURES OF EARTH-QUAKE DESIGN CATEGORY B
512 - 4.3.1 General
512 - 4.3.2 Load paths, ties and continuity
512 - 4.3.3 Wall anchorage
512 - 4.4 STRUCTURAL DETAILING REQUIREMENTS FOR STRUCTURES OF EARTH-QUAKE DESIGN CATEGORIES C, D AND E
512 - 4.4.1 General
513 - 4.4.2 Ties and continuity
513 - 4.4.3 Diaphragms
513 - 4.4.4 Bearing walls
513 - 4.4.5 Openings
513 - 4.4.6 Footing ties
514 - SECTION 6 STATIC ANALYSIS
514 - 6.1 GENERAL
514 - 6.2 HORIZONTAL FORCES
514 - 6.2.1 General
514 - 6.2.2 Earthquake base shear
514 - 6.2.3 Earthquake design coefficient
514 - 6.2.4 Structure period
515 - 6.2.5 Gravity load
515 - 6.2.6 Structural response factor
515 - 6.3 VERTICAL DISTRIBUTION OF HORIZONTAL EARTHQUAKE FORCES
518 - 6.4 HORIZONTAL SHEAR DISTRIBUTION
518 - 6.5 TORSIONAL EFFECTS
518 - 6.5.1 Introduction
518 - 6.5.2 Static eccentricity
518 - 6.5.3 Design eccentricities
520 - 6.5.4 Horizontal torsional moments
520 - 6.5.5 Design action effects resulting from torsional moments
520 - 6.6 STABILITY EFFECTS
520 - 6.7 DRIFT DETERMINATION AND P-DELTA EFFECTS
520 - 6.7.1 General
520 - 6.7.2 Storey drift determination
521 - 6.7.3 P-delta effects
521 - 6.8 VERTICAL COMPONENT OF GROUND MOTION
522 - APPENDIX A - STRUCTURE CLASSIFICATION
522 - A1 STRUCTURE CLASSIFICATION
523 - A2 CONFIGURATION
523 - A2.1 General
523 - A2.2 Plan configuration
524 - A2.3 Vertical configuration
527 - APPENDIX B - STRUCTURAL SYSTEM
527 - B1 DUCTILITY
527 - B2 STRUCTURAL SYSTEMS
528 - APPENDIX C - DOMESTIC STRUCTURES
528 - C1 GENERAL
528 - C2 TYPE OF STRUCTURES
528 - C2.1 Ductile structures
528 - C2.2 Non-ductile structures
528 - C3 DETAILING GUIDES
528 - C3.1 Foundation and subfloor framing
529 - C3.2 Wall framing
529 - C3.3 Roof bracing
529 - C3.4 Tiled roofs
529 - C3.5 Gable ends and parapets
532 - CHAPTER 6 RESIDENTIAL SLABS AND FOOTINGS
533 - SECTION 1 SCOPE AND GENERAL
533 - 1.1 SCOPE
533 - 1.2 APPLICATION
533 - 1.3 PERFORMANCE OF FOOTING SYSTEMS
533 - 1.3.1 General
533 - 1.3.2 Normal sites
534 - 1.3.3 Abnormal moisture conditions
534 - 1.4 DESIGN CONDITIONS
534 - 1.4.1 General
534 - 1.4.2 Load effects
534 - 1.4.3 Other design considerations
535 - 1.5 DEEMED-TO-COMPLY STANDARD DESIGNS
535 - 1.6 REFERENCED DOCUMENTS
535 - 1.7 DEFINITIONS
535 - 1.7.1 Allowable bearing pressure
536 - 1.7.2 Articulated full masonry
536 - 1.7.3 Articulated masonry veneer
536 - 1.7.4 Braced stump
536 - 1.7.5 Bracing stump
536 - 1.7.6 Bored pier
536 - 1.7.7 Bulk pier
536 - 1.7.8 Characteristic surface movement
536 - 1.7.9 Clad frame
536 - 1.7.10 Clay
536 - 1.7.11 Collapsing soil
536 - 1.7.12 Concrete wall panel
536 - 1.7.13 Controlled fill
536 - 1.7.14 Edge beam
536 - 1.7.15 Edge footing
536 - 1.7.16 Extension
536 - 1.7.17 Fill depth
536 - 1.7.18 Finished ground level
536 - 1.7.19 Fitment
536 - 1.7.20 Footing
536 - 1.7.21 Footing slab
536 - 1.7.22 Footing system
536 - 1.7.23 Foundation
536 - 1.7.24 Framed double-leaf masonry
537 - 1.7.25 Full masonry
537 - 1.7.26 Gilgai
537 - 1.7.27 House
537 - 1.7.28 Infill slab
537 - 1.7.29 Landslip
537 - 1.7.30 Load-bearing wall
537 - 1.7.31 Masonry
537 - 1.7.32 Masonry veneer
537 - 1.7.33 Maximum differential footing movement
537 - 1.7.34 Mine subsidence
537 - 1.7.35 Mixed construction
537 - 1.7.36 Natural site
537 - 1.7.37 One-storey
537 - 1.7.38 Outbuilding
537 - 1.7.39 Pad footing
537 - 1.7.40 Pier-and-beam
537 - 1.7.41 Pier-and-slab
537 - 1.7.42 Pile
537 - 1.7.43 Qualified engineer
537 - 1.7.44 Reactive site
537 - 1.7.45 Reinforcement
538 - 1.7.46 Reinforced single-leaf masonry
538 - 1.7.47 Rock
538 - 1.7.48 Rolled fill
538 - 1.7.49 Sand
538 - 1.7.50 Shall
538 - 1.7.51 Should
538 - 1.7.52 Silt
538 - 1.7.53 Single-leaf masonry
538 - 1.7.54 Slab
538 - 1.7.55 Slab-on-ground
538 - 1.7.56 Slab panel
538 - 1.7.57 Soft site
538 - 1.7.58 Stiffened raft
538 - 1.7.59 Strip footing
538 - 1.7.60 Stump
538 - 1.7.61 Two-storey
538 - 1.7.62 Veneer
538 - 1.7.63 Waffle raft
538 - 1.8 NOTATION
539 - 1.9 REINFORCEMENT DESIGNATION
539 - 1.9.1 Trench mesh
539 - 1.9.2 Square fabric
539 - 1.9.3 Reinforcing bars
539 - 1.9.4 High strength steel
539 - 1.10 INFORMATION ON DRAWINGS
540 - SECTION 2 SITE CLASSIFICATION
540 - 2.1 GENERAL
540 - 2.1.1 Classification
540 - 2.1.2 Definitions
540 - 2.2 METHODS FOR SITE CLASSIFICATION
540 - 2.2.1 General
541 - 2.2.2 Identification of the soil profile
541 - 2.2.3 Estimation of the characteristic surface movement
543 - 2.3 SITE INVESTIGATION REQUIREMENTS
543 - 2.3.1 General
543 - 2.3.2 Purpose
543 - 2.3.3 Depth of investigation
543 - 2.3.4 Minimum number of exploration positions
543 - 2.3.5 Assessment of allowable bearing pressure
544 - 2.4 ADDITIONAL CONSIDERATIONS FOR SITE CLASSIFICATION
544 - 2.4.1 General
544 - 2.4.2 Sites consisting predominantly of sand or rock
544 - 2.4.3 Natural sand sites underlain by clay
544 - 2.4.4 Class P sites
544 - 2.4.5 Effect of site works on classification
544 - 2.4.6 Effect of fill on classification
546 - SECTION 3 STANDARD DESIGNS
546 - 3.1 SELECTION OF FOOTING SYSTEMS
546 - 3.1.1 Selection procedure
546 - 3.1.2 Design for single-leaf masonry, mixed construction and earth masonry
547 - 3.1.3 Construction with framed party walls
547 - 3.1.4 Design for masonry feature walls
547 - 3.1.5 Design for outbuildings and extensions to dwellings
547 - 3.1.6 Design for rock outcrops
547 - 3.1.7 Design for partial rock foundation
547 - 3.1.8 Design for complete rock foundation
547 - 3.2 PIER-AND-BEAM, PIER-AND-SLAB OR PILE SYSTEMS
558 - 3.3 REINFORCEMENT EQUIVALENCES
558 - 3.4 SUSPENDED CONCRETE FLOORS IN ONE-STOREY CONSTRUCTION
558 - 3.5 FOOTING SYSTEMS FOR TWO-STOREY CONSTRUCTION WITH SUSPENDED CONCRETE FLOOR
559 - 3.6 FOOTINGS FOR CONCENTRATED LOADS
559 - 3.6.1 Footings for columns
559 - 3.6.2 Footings for fireplaces on Class A and S sites
560 - SECTION 4 DESIGN BY ENGINEERING PRINCIPLES
560 - 4.1 GENERAL
560 - 4.2 DESIGN LOADS
560 - 4.3 DESIGN OF FOOTING SYSTEMS
560 - 4.4 RAFT FOOTING SYSTEMS
561 - 4.5 MODIFICATION OF STANDARD RAFT DESIGNS
561 - 4.5.1 Application
562 - 4.5.2 Modification procedure
562 - 4.5.3 Detailing and construction requirements
562 - 4.6 DESIGN OF FOOTING SYSTEMS OTHER THAN STIFFENED RAFTS
564 - APPENDIX C - CLASSIFICATION OF DAMAGE DUE TO FOUNDATION MOVEMENTS
565 - AMENDMENT CONTROL SHEET

Contains extracts from the principal material design Standards namely concrete, steel, timber, masonry, loads and residential footings. Extracts incorporate all amendments and revisions to July 2001.

Committee
B-000
DocumentType
Handbook
ISBN
0 7337 3521 5
Pages
559
PublisherName
Standards Australia
Status
Superseded
SupersededBy
Supersedes

First published as part of HB 2-1982.
Revised and redesignated in part as HB 2.2-1986.
Second edition 1988.
Third edition 1989.
Fourth edition 1991.
Fifth edition 1995.
Sixth edition 1998.
Seventh edition 2002.

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.