SAE AIR1168/8A
Current
The latest, up-to-date edition.
Aircraft Fuel Weight Penalty Due to Air Conditioning
Hardcopy , PDF
English
25-07-2011
1 INTRODUCTION
1.1 Scope
1.2 Nomenclature
1.3 Common Abbreviations
2 THE TOTAL SYSTEM TAKE-OFF WEIGHT METHOD
2.1 Fixed Weight Penalty
2.2 Variable Weight (Expendable Material) Penalty
2.3 Ram Air Penalty
2.4 Bleed Air Penalty
2.5 Shaft Horsepower Extraction Penalty
3 SAMPLE CALCULATION: Take-Off Weight Method
3.1 System Operating Data
3.2 Fixed Weight Penalty
3.4 Ram Air Penalty
3.5 Bleed Air Penalty
3.6 Shaft Horsepower Extraction Penalty
3.7 Total System Penalty (Cruise Segment)
4 REFERENCES
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission.
DocumentType |
Standard
|
Pages |
20
|
ProductNote |
THIS STANDARD IS NOW STABILIZED
|
PublisherName |
SAE International
|
Status |
Current
|
Supersedes |
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given.Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons:1It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used.2It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.All factors that influence the flight performance of an aircraft can be expressed in terms of weight, external and momentum drags, and changes in powerplant performance due to bleed air or shaft power extraction, or both. These factors lend themselves to numerical analysis, and the purpose of this chapter is to present and discuss methods that permit their evaluation.The methods of evaluating performance penalties to an aircraft in flight employ such parameters as flight range, aircraft gross weight, fuel load, payload, speed-altitude characteristics (Refs. 1-3), and the effects of power, landing, and take-off field length limiting cases.Two major criteria need to be considered in arriving at system take-off weight penalties:1Air vehicle weight is assumed fixed, and degradation in range occurs as a result of weight displacing fuel.2Range is assumed fixed, and the resultant take-off weight penalty is added to the total airplane weight.The latter method will be discussed in this section, and is based, in part, on Ref. 4. The former method (degradation in range) can be found, in detail, in Ref. 5.The optimization process consists of calculating specific penalty numbers for system fixed weight, variable weight, power consumption, ram air, and bleed air consumption, in terms of take-off weight and selecting the system that results in greater payload or range.
SAE AIR 6464 : 2013 | EUROCAE/SAE WG80/AE-7AFC HYDROGEN FUEL CELLS AIRCRAFT FUEL CELL SAFETY GUIDELINES |
SAE AS 6858 : 2017 | INSTALLATION OF FUEL CELL SYSTEMS IN LARGE CIVIL AIRCRAFT |
SAE AIR 1957 : 2015 | HEAT SINKS FOR AIRBORNE VEHICLES |
ASHRAE HDBK REFRIGERATION : 2014 | ASHRAE HANDBOOK - REFRIGERATION |
SAE ARP85F | Air Conditioning Systems for Subsonic Airplanes |
SAE ARP85F:2019 | Air Conditioning Systems for Subsonic Airplanes<br> |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.