• Shopping Cart
    There are no items in your cart

ASTM C 1672 : 2017

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer

Available format(s)

Hardcopy , PDF

Superseded date

02-02-2024

Superseded by

ASTM C 1672 : 2023

Language(s)

English

Published date

25-01-2017

€74.48
Excluding VAT

Committee
C 26
DocumentType
Test Method
Pages
20
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This method describes the determination of the isotopic composition, or the concentration, or both, of uranium and plutonium as nitrate solutions by the total evaporation method using a thermal ionization mass spectrometer (TIMS) instrument. Purified uranium or plutonium nitrate solutions are deposited onto a metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion currents are continually measured until the whole sample is exhausted. The measured ion currents are integrated over the course of the measurement and normalized to a reference isotope ion current to yield isotope ratios.

1.2In principle, the total evaporation method should yield isotope ratios that do not require mass bias correction. In practice, samples may require this bias correction. Compared to the conventional TIMS method described in Test Method C1625, the total evaporation method is approximately two times faster, improves precision of the isotope ratio measurements by a factor of two to four, and utilizes smaller sample sizes. Compared to the C1625 method, the total evaporation method provides “major” isotope ratios 235U/238U and 240Pu/239Pu with improved accuracy.

1.3The total evaporation method is prone to biases in the “minor” isotope ratios (233U/238U, 234U/238U, and 236U/238U ratios for uranium materials and 238Pu/239Pu, 241Pu/239Pu, 242Pu/239Pu, and 244Pu/239Pu ratios for plutonium materials) due to peak tailing from adjacent major isotopes. The magnitude of the absolute bias is dependent on measurement and instrumental characteristics. The relative bias, however, depends on the relative isotopic abundances of the sample. The use of an electron multiplier equipped with an energy filter may eliminate or diminish peak tailing effects. Measurement of the abundance sensitivity of the instrument may be used to ensure that such biases are negligible, or may be used to bias correct the minor isotope ratios.

1.4The values stated in SI units are to be regarded as standard. When non-SI units are provided in parentheses, they are for information only.

1.5This standard may involve the use of hazardous materials and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

ASTM C 1871 : 2018 : REV A Standard Test Method for Determination of Uranium Isotopic Composition by the Double Spike Method Using a Thermal Ionization Mass Spectrometer
ASTM C 1816 : 2016 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
ASTM C 1880 : 2019 Standard Practice for Sampling Gaseous Uranium Hexafluoride using Alumina Pellets
ASTM C 697 : 2016 Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Plutonium Dioxide Powders and Pellets
ASTM C 698 : 2016 Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Mixed Oxides ((U, Pu)O<inf>2</inf>)
ASTM C 1832 : 2016 Standard Test Method for Determination of Uranium Isotopic Composition by the Modified Total Evaporation (MTE) Method Using a Thermal Ionization Mass Spectrometer
ASTM C 1128 : 2018 Standard Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials
ASTM C 1817 : 2016 Standard Test Method for The Determination of the Oxygen to Metal (O/M) Ratio in Sintered Mixed Oxide ((U, Pu)O<inf>2</inf>) Pellets by Gravimetry
ASTM C 1636 : 2022 Standard Guide for Determination of Uranium-232 in Uranium Hexafluoride
ASTM E 321 : 2020 Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method)
ASTM C 1871 : 2022 Standard Test Method for Determination of Uranium Isotopic Composition by the Double Spike Method Using a Thermal Ionization Mass Spectrometer
ASTM C 1913 : 2021 Standard Practice for Sampling Gaseous Uranium Hexafluoride Using Zeolite in Single-Use Destructive Assay Sampler
ASTM C 1128 : 2023 Standard Guide for Preparation of Working Reference Materials for Use in Analysis of Nuclear Fuel Cycle Materials

ASTM C 833 : 2017 Standard Specification for Sintered (Uranium-Plutonium) Dioxide Pellets for Light Water Reactors
ASTM C 1168 : 2023 Standard Practice for Preparation and Dissolution of Plutonium Materials for Analysis
ASTM C 1816 : 2016 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
ASTM C 1415 : 2001 Standard Test Method for <sup>238</sup>Pu Isotopic Abundance by Alpha Spectrometry
ASTM C 859 : 2023 Standard Terminology Relating to Nuclear Materials
ASTM C 1832 : 2016 Standard Test Method for Determination of Uranium Isotopic Composition by the Modified Total Evaporation (MTE) Method Using a Thermal Ionization Mass Spectrometer
ASTM C 1415 : 1999 Standard Test Method for <sup>238</sup>Pu Isotopic Abundance by Alpha Spectrometry
ASTM C 1347 : 2008 : R2014 : EDT 1 Standard Practice for Preparation and Dissolution of Uranium Materials for Analysis
ASTM C 859 : 2014 : REV B Standard Terminology Relating to Nuclear Materials
ASTM C 757 : 1990 : R1996 : EDT 1 Standard Specification for Nuclear-Grade Plutonium Dioxide Powder, Sinterable
ASTM C 776 : 2017 : R2022 Standard Specification for Sintered Uranium Dioxide Pellets for Light Water Reactors
ASTM C 833 : 2023 Standard Specification for Sintered (Uranium-Plutonium) Dioxide Pellets for Light Water Reactors
ASTM D 3084 :2005 Standard Practice for Alpha-Particle Spectrometry of Water
ASTM D 1193 : 1977 : R1983 : EDT 1 Standard Specification for Reagent Water
ASTM C 967 : 1987 : R1996 Standard Specification for Uranium Ore Concentrate
ASTM C 757 : 2016 : EDT 1 Standard Specification for Nuclear-Grade Plutonium Dioxide Powder for Light Water Reactors
ASTM C 1068 : 1996 : EDT 1 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
ASTM C 1156 : 2003 : R2011 Standard Guide for Establishing Calibration for a Measurement Method Used to Analyze Nuclear Fuel Cycle Materials
ASTM C 1411 : 2014 Standard Practice for The Ion Exchange Separation of Uranium and Plutonium Prior to Isotopic Analysis
ASTM C 1168 : 2015 Standard Practice for Preparation and Dissolution of Plutonium Materials for Analysis
ASTM C 1347 : 2008 : R2023 Standard Practice for Preparation and Dissolution of Uranium Materials for Analysis
ASTM C 1068 : 2003 : R2011 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
ASTM C 1411 : 2001 Standard Practice for the Ion Exchange Separation of Uranium and Plutonium Prior to Isotopic Analysis
ASTM D 1193 : 2006 : R2011 Standard Specification for Reagent Water
ASTM C 1832 : 2022 Standard Test Method for Determination of Uranium Isotopic Composition by Modified Total Evaporation (MTE) Method Using Thermal Ionization Mass Spectrometer
ASTM C 1832 : 2021 Standard Test Method for Determination of Uranium Isotopic Composition by Modified Total Evaporation (MTE) Method Using Thermal Ionization Mass Spectrometer
ASTM C 1415 : 2014 Standard Test Method for <sup>238</sup>Pu Isotopic Abundance By Alpha Spectrometry
ASTM C 1625 : 2019 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
ASTM C 1068 : 2015 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
ASTM C 1415 : 2001 : REV A : R2007 Standard Test Method for <sup>238</sup>Pu Isotopic Abundance by Alpha Spectrometry
ASTM C 757 : 2016 : R2021 Standard Specification for Nuclear-Grade Plutonium Dioxide Powder for Light Water Reactors
ASTM C 1068 : 2021 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
ASTM C 1008 : 1999 : R2008 Standard Specification for Sintered (Uranium-Plutonium) Dioxide<br> Pellets<span class='unicode'>—</span>Fast Reactor Fuel (Withdrawn 2014)
ASTM C 1411 : 1999 Standard Practice for the Ion Exchange Separation of Uranium and Plutonium Prior to Isotopic Analysis
ASTM C 859 : 2022 Standard Terminology Relating to Nuclear Materials
ASTM C 859 : 2022 : REV A Standard Terminology Relating to Nuclear Materials
ASTM C 753 : 2016 : REV A Standard Specification for Nuclear-Grade, Sinterable Uranium Dioxide Powder
ASTM C 1625 : 2005 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
ASTM D 1193 : 1991 Standard Specification for Reagent Water
ASTM C 1156 : 2018 Standard Guide for Establishing Calibration for a Measurement Method Used to Analyze Nuclear Fuel Cycle Materials
ASTM C 1068 : 2003 Standard Guide for Qualification of Measurement Methods by a Laboratory Within the Nuclear Industry
ASTM C 1347 : 2002 Standard Practice for Preparation and Dissolution of Uranium Materials for Analysis
ASTM C 776 : 2017 Standard Specification for Sintered Uranium Dioxide Pellets for Light Water Reactors
ASTM C 1156 : 1995 : EDT 1 Standard Guide for Establishing Calibration for a Measurement Method Used to Analyze Nuclear Fuel Cycle Materials
ASTM C 1411 : 2008 Standard Practice for The Ion Exchange Separation of Uranium and Plutonium Prior to Isotopic Analysis
ASTM C 1168 : 2001 Standard Practice for Preparation and Dissolution of Plutonium Materials for Analysis
ASTM C 1168 : 1990 : R1995 : EDT 1 Standard Practice for Preparation and Dissolution of Plutonium Materials for Analysis
ASTM D 1193 : 1970 Standard Specification For Reagent Water
ASTM D 1193 : 2006 Standard Specification for Reagent Water
ASTM C 1832 : 2023 Standard Test Method for Determination of Uranium Isotopic Composition by Modified Total Evaporation (MTE) Method Using Thermal Ionization Mass Spectrometer
ASTM D 1193 : 1999 Standard Specification for Reagent Water
ASTM D 3084 : 1996 Standard Practice for Alpha-Particle Spectrometry of Water
ASTM C 1008 : 1999 Standard Specification for Sintered (Uranium-Plutonium) Dioxide Pellets-Fast Reactor Fuel
ASTM C 1415 : 2018 Standard Test Method for <sup>238</sup>Pu Isotopic Abundance By Alpha Spectrometry
ASTM D 1193 : 2006 : R2018 Standard Specification for Reagent Water
ASTM C 1347 : 2008 Standard Practice for Preparation and Dissolution of Uranium Materials for Analysis
ASTM C 1156 : 2003 Standard Guide for Establishing Calibration for a Measurement Method Used to Analyze Nuclear Fuel Cycle Materials
ASTM C 753 : 2016 : REV A : R2021 Standard Specification for Nuclear-Grade, Sinterable Uranium Dioxide Powder
ASTM D 3084 : 2005 : R2012 Standard Practice for Alpha-Particle Spectrometry of Water
ASTM C 1625 : 2012 Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances by Thermal Ionization Mass Spectrometry
ASTM C 1816 : 2015 Standard Practice for The Ion Exchange Separation of Small Volume Samples Containing Uranium, Americium, and Plutonium Prior to Isotopic Abundance and Content Analysis
ASTM C 1168 : 2008 Standard Practice for Preparation and Dissolution of Plutonium Materials for Analysis

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.