• Shopping Cart
    There are no items in your cart

ASTM D 4452 : 2014

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by

Standard Practice for X-Ray Radiography of Soil Samples

Available format(s)

Hardcopy , PDF

Superseded date

05-11-2022

Language(s)

English

Published date

03-09-2014

€49.35
Excluding VAT

Committee
D 18
DocumentType
Standard Practice
Pages
14
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

1.1This practice covers the determination of the quality of soil samples in thin wall tubes or of extruded cores by X-ray radiography.

1.2This practice enables the user to determine the effects of sampling and natural variations within samples as identified by the extent of the relative penetration of X-rays through soil samples.

1.3This practice can be used to X-ray cores (or observe their features on a fluoroscope) in thin wall tubes or liners ranging from approximately 50 to 150 mm (2 to 6 in.) in diameter. X-rays of samples in the larger diameter tubes provide a radiograph of major features of soils and disturbances, such as large scale bending of edges of varved clays, shear planes, the presence of large concretions, silt and sand seams thicker than 6 mm (1/4in.), large lumps of organic matter, and voids or other types of intrusions. X-rays of the smaller diameter cores provide higher resolution of soil features and disturbances, such as small concretions (3 mm (1/8in.) diameter or larger), solution channels, slight bending of edges of varved clays, thin silt or sand seams, narrow solution channels, plant root structures, and organic matter. The X-raying of samples in thin wall tubes or liners requires minimal preparation.

1.4Greater detail and resolution of various features of the soil can be obtained by X-raying of extruded cores, as compared to samples in metal tubes. The method used for X-raying cores is the same as that for tubes and liners, except that extruded cores have to be handled with extreme care and have to be placed in sample holders (similar to Fig. 2) before X-raying. This practice should be used only when natural water content or other intact soil characteristics are irrelevant to the end use of the sample.

1.4.1Often it is necessary to obtain greater resolution of features to determine the propriety of sampling methods, the representative nature of soil samples, or anomalies in soils. This practice requires that either duplicate samples be obtained or already tested specimens be X-rayed.

1.5This practice can only be used to their fullest extent after considerable experience is obtained through many detailed comparisons between the X-ray image and the sample X-rayed.

1.6Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard.

1.6.1Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.

1.7 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

1.8All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.8.1For purposes of comparing, a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.

1.8.2The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the signification digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.9This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 6.

ASTM D 3213 : 2019 Standard Practices for Handling, Storing, and Preparing Soft Intact Marine Soil
ASTM D 1587/D1587M : 2015 Standard Practice for Thin-Walled Tube Sampling of Fine-Grained Soils for Geotechnical Purposes (Withdrawn 2024)
ASTM D 420 : 2018 Standard Guide for Site Characterization for Engineering Design and Construction Purposes
ASTM D 6169/D6169M : 2013 Standard Guide for Selection of Soil and Rock Sampling Devices Used With Drill Rigs for Environmental Investigations
ASTM D 6528 : 2017 Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Fine Grain Soils
ASTM D 2435/D2435M : 2011 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
ASTM D 4186/D4186M : 2012 : EDT 1 Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading
ASTM D 6236 : 2011 Standard Guide for Coring and Logging Cement - or Lime-Stabilized Soil (Withdrawn 2020)
ASTM D 2435/D2435M : 2011 : R2020 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
ASTM D 4186/D4186M : 2020 : EDT 1 Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading
ASTM D 6169/D6169M : 2021 Standard Guide for Selection of Subsurface Soil and Rock Sampling Devices for Environmental and Geotechnical Investigations

ASTM D 653 : 2007 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 3740 : 2012 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2019 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2004 : REV A : EDT 1 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2008 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2013 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 6026 : 2006 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 1999 : REV C Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2020 : EDT 1 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1999 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2011 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2001 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2010 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2021 : REV A Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1996 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2004 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2001 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2021 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 653 : 2021 : REV B Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1996 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2012 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2003 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2021 Standard Practice for Using Significant Digits and Data Records in Geotechnical Data
ASTM D 6026 : 2001 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2004 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.