ASTM D 6431 : 2018
Current
The latest, up-to-date edition.
Standard Guide for Using the Direct Current Resistivity Method for Subsurface Site Characterization
Hardcopy , PDF
English
01-02-2018
Committee |
D 18
|
DocumentType |
Guide
|
Pages |
14
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1Purpose and Application:
1.1.1This guide summarizes the equipment, field procedures, and interpretation methods for the assessment of the electrical properties of subsurface materials and their pore fluids, using the direct current (DC) resistivity method. Measurements of the electrical properties of subsurface materials are made from the land surface and yield an apparent resistivity. These data can then be interpreted to yield an estimate of the depth, thickness, voids, and resistivity of subsurface layer(s).
1.1.2Resistivity measurements as described in this guide are applied in geological, geotechnical, environmental, and hydrologic investigations. The resistivity method is used to map geologic features such as lithology, structure, fractures, and stratigraphy; hydrologic features such as depth to water table, depth to aquitard, and groundwater salinity; and to delineate groundwater contaminants. General references are, Keller and Frischknecht (1),2 Zohdy et al (2), Koefoed (3), EPA(4), Ward (5), Griffiths and King (6), and Telford et al (7).
1.1.3This guide does not address the use tomographic interpretation methods, commonly referred to as electrical resistivity tomography (ERT) or electrical resistivity imaging (ERI). While many of the principles apply the data acquisition and interpretation differ from those set forth in this guide.
1.2Limitations:
1.2.1This guide provides an overview of the Direct Current Resistivity Method. It does not address in detail the theory, field procedures, or interpretation of the data. Numerous references are included for that purpose and are considered an essential part of this guide. It is recommended that the user of the resistivity method be familiar with the references cited in the text and with the Guide D420, Practice D5088, Practice D5608, Guide D5730, Test Method G57, D6429, and D6235.
1.2.2This guide is limited to the commonly used approach for resistivity measurements using sounding and profiling techniques with the Schlumberger, Wenner, or dipole-dipole arrays and modifications to those arrays. It does not cover the use of a wide range of specialized arrays. It also does not include the use of spontaneous potential (SP) measurements, induced polarization (IP) measurements, or complex resistivity methods.
1.2.3The resistivity method has been adapted for a number of special uses, on land, within a borehole, or on water. Discussions of these adaptations of resistivity measurements are not included in this guide.
1.2.4The approaches suggested in this guide for the resistivity method are the most commonly used, widely accepted and proven; however, other approaches or modifications to the resistivity method that are technically sound may be substituted if technically justified and documented.
1.2.5This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgements. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.
1.3Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.
1.4Precautions:
1.4.1It is the responsibility of the user of this guide to follow any precautions in the equipment manufacturer's recommendations and to consider the safety implications when high voltages and currents are used.
1.4.2If this guide is used at sites with hazardous materials, operations, or equipment, it is the responsibility of the user of this guide to establish appropriate safety and health practices and to determine the applicability of regulations prior to use.
1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM D 6820 : 2018 | Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Site Characterization |
ASTM D 5092/D5092M : 2016 | Standard Practice for Design and Installation of Groundwater Monitoring Wells |
ASTM D 420 : 2018 | Standard Guide for Site Characterization for Engineering Design and Construction Purposes |
ASTM D 7046 : 2011 | Standard Guide for Use of the Metal Detection Method for Subsurface Exploration (Withdrawn 2020) |
ASTM D 6639 : 2018 | Standard Guide for Using the Frequency Domain Electromagnetic Method for Subsurface Site Characterizations |
ASTM D 5730 : 2002 | Standard Guide for Site Characterization for Environmental Purposes With Emphasis on Soil, Rock, the Vadose Zone and Ground Water |
ASTM D 653 : 2007 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5730 : 1998 | Standard Guide for Site Characterization for Environmental Purposes With Emphasis on Soil, Rock, the Vadose Zone and Ground Water |
ASTM D 6235 : 2004 | Standard Practice for Expedited Site Characterization of Vadose Zone and Ground Water Contamination at Hazardous Waste Contaminated Sites |
ASTM D 5088 : 2002 | Standard Practice for Decontamination of Field Equipment Used at Nonradioactive Waste Sites |
ASTM D 6429 : 1999 : R2011 : EDT 1 | Standard Guide for Selecting Surface Geophysical Methods (Withdrawn 2020) |
ASTM D 6235 : 2004 : R2010 | Standard Practice for Expedited Site Characterization of Vadose Zone and Groundwater Contamination at Hazardous Waste Contaminated Sites |
ASTM D 6429 : 1999 | Standard Guide for Selecting Surface Geophysical Methods |
ASTM D 5088 : 2015 : REV A | Standard Practice for Decontamination of Field Equipment Used at Waste Sites |
ASTM D 653 : 2024 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6429 : 2020 | Standard Guide for Selecting Surface Geophysical Methods |
ASTM D 5608 : 1994 | Standard Practice for Decontamination of Field Equipment Used at Low Level Radioactive Waste Sites |
ASTM D 653 : 2022 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5088 : 2020 | Standard Practice for Decontamination of Field Equipment Used at Waste Sites |
ASTM D 6429 : 1999 : R2006 | Standard Guide for Selecting Surface Geophysical Methods |
ASTM D 653 : 2020 : EDT 1 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5088 : 1990 | Standard Practice for Decontamination of Field Equipment Used at Nonradioactive Waste Sites |
ASTM D 6235 : 1998 : REV A | Standard Practice for Expedited Site Characterization of Vadose Zone and Ground Water Contamination at Hazardous Waste Contaminated Sites |
ASTM D 653 : 2021 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6235 : 2018 | Standard Practice for Expedited Site Characterization of Vadose Zone and Groundwater Contamination at Hazardous Waste Contaminated Sites |
ASTM D 5608 : 2016 | Standard Practices for Decontamination of Sampling and Non Sample Contacting Equipment Used at Low Level Radioactive Waste Sites |
ASTM D 653 : 2021 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 653 : 2021 : REV B | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5608 : 2010 | Standard Practices for Decontamination of Field Equipment Used at Low Level Radioactive Waste Sites |
ASTM D 6429 : 2023 | Standard Guide for Selecting Surface Geophysical Methods |
ASTM D 5088 : 2015 | Standard Practice for Decontamination of Field Equipment Used at Waste Sites |
ASTM D 5608 : 2001 | Standard Practice for Decontamination of Field Equipment Used at Low Level Radioactive Waste Sites |
ASTM D 5088 : 2002 : R2008 | Standard Practice for Decontamination of Field Equipment Used at Waste Sites |
ASTM D 5608 : 2001 : R2006 | Standard Practices for Decontamination of Field Equipment Used at Low Level Radioactive Waste Sites |
ASTM D 653 : 2024 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5730 : 2004 | Standard Guide for Site Characterization for Environmental Purposes With Emphasis on Soil, Rock, the Vadose Zone and Groundwater (Withdrawn 2013) |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.