• Shopping Cart
    There are no items in your cart

ASTM D 7383 : 2019

Current

Current

The latest, up-to-date edition.

Standard Test Methods for Axial Rapid Load (Compressive Force Pulse) Testing of Deep Foundations

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

01-03-2019

€56.53
Excluding VAT

These test methods, commonly referred to as Rapid Load Testing, cover procedures for testing an individual vertical or inclined deep foundation element to determine the displacement response to an axial compressive force pulse applied at its top.

Committee
D 18
DocumentType
Test Method
Pages
9
ProductNote

This standard refers to : ASTM D1143 / D1143M - 07(2013)e1
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

1.1These test methods, commonly referred to as Rapid Load Testing, cover procedures for testing an individual vertical or inclined deep foundation element to determine the displacement response to an axial compressive force pulse applied at its top. These non-static foundation test methods apply to all deep foundation units, referred to herein as “piles,” that function in a manner similar to driven or cast-in-place piles, regardless of their method of installation.

1.2Two alternative procedures are provided:

1.2.1Procedure A uses a combustion gas pressure apparatus to produce the required axial compressive force pulse.

1.2.2Procedure B uses a cushioned drop mass apparatus to produce the required axial compressive force pulse.

1.3This standard provides minimum requirements for testing deep foundations under an axial compressive force pulse. Plans, specifications, provisions (or combinations thereof) prepared by a qualified engineer, may provide additional requirements and procedures as needed to satisfy the objectives of a particular deep foundation test program. The engineer in responsible charge of the foundation design, referred to herein as the “Engineer,” shall approve any deviations, deletions, or additions to the requirements of this standard.

1.4The proper conduct and evaluation of the test requires special knowledge and experience. A qualified engineer should directly supervise the acquisition of field data and the interpretation of the test results so as to predict the actual performance and adequacy of deep foundations used in the constructed foundation. A qualified engineer shall approve the apparatus used for applying the force pulse, rigging and hoisting equipment, support frames, templates, and test procedures.

1.5The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.

1.6The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.7.1The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data

1.8The method used to specify how data are collected, calculated or recorded in this standard is not directly related to the accuracy to which the data can be applied in the design or other uses, or both. How one uses the results obtained using this standard is beyond its scope.

1.9ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

1.10This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Section 7 provides a partial list of specific hazards and precautions.

1.11This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

ASTM D 653 : 2007 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6760 : 2014 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing
ASTM D 3740 : 2012 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 1143/D1143M : 2020 : EDT 1 Standard Test Methods for Deep Foundation Elements Under Static Axial Compressive Load
ASTM D 5882 : 2000 Standard Test Method for Low Strain Integrity Testing of Piles
ASTM D 3740 : 2023 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2019 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2004 : REV A : EDT 1 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2008 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2013 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 6026 : 2006 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3689/D3689M : 2022 Standard Test Methods for Deep Foundation Elements Under Static Axial Tensile Load
ASTM D 3740 : 1999 : REV C Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2024 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 1143/D1143M : 2020 Standard Test Methods for Deep Foundation Elements Under Static Axial Compressive Load
ASTM D 6760 : 2016 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing
ASTM D 5882 : 2007 : R2013 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations
ASTM D 3689/D3689M : 2007 : R2013 : EDT 1 Standard Test Methods for Deep Foundations Under Static Axial Tensile Load
ASTM D 653 : 2022 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 653 : 2020 : EDT 1 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1999 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 5882 : 2016 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations
ASTM D 3740 : 2011 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6760 : 2008 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing
ASTM D 6026 : 2001 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2010 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2021 : REV A Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 1996 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2004 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2001 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 653 : 2021 Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 653 : 2021 : REV B Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6760 : 2002 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing
ASTM D 6026 : 1996 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 3740 : 2012 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 3740 : 2003 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
ASTM D 6026 : 2021 Standard Practice for Using Significant Digits and Data Records in Geotechnical Data
ASTM D 653 : 2024 : REV A Standard Terminology Relating to Soil, Rock, and Contained Fluids
ASTM D 6026 : 2001 Standard Practice for Using Significant Digits in Geotechnical Data
ASTM D 5882 : 2007 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations
ASTM D 3740 : 2004 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.