ASTM E 2056 : 2000
Superseded
A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
View Superseded by
Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses, Calibrated Using Surrogate Mixtures
Hardcopy , PDF
11-11-2014
English
10-09-2000
Committee |
E 13
|
DocumentType |
Standard Practice
|
Pages |
10
|
PublisherName |
American Society for Testing and Materials
|
Status |
Superseded
|
SupersededBy |
1.1 This practice relates to the multivariate calibration of spectrometers and spectrophotometers used in determining the physical and chemical characteristics of materials. A detailed description of general multivariate analysis is given in Practice E1655. This standard refers only to those instances where surrogate mixtures can be used to establish a suitable calibration matrix. This practice specifies calibration and qualification data set requirements for interlaboratory studies (ILSs), that is, round robins, of standard test methods employing surrogate calibration techniques that do not conform exactly to Practices E1655.
Note 1--For some multivariate spectroscopic analyses, interferences and matrix effects are sufficiently small that it is possible to calibrate using mixtures that contain substantially fewer chemical components than the samples that will ultimately be analyzed. While these surrogate methods generally make use of the multivariate mathematics described in Practices E1655, they do not conform to procedures described therein, specifically with respect to the handling of outliers.
1.2 This practice specifies how the ILS data is treated to establish spectrometer/spectrophotometer performance qualification requirements to be incorporated into standard test methods.
Note 2--Spectrometer/spectrophotometer qualification procedures are intended to allow the user to determine if the performance of a specific spectrometer/spectrophotometer is adequate to conduct the analysis so as to obtain results consistent with the published test method precision.
1.2.1 The spectroscopies used in the surrogate test methods would include but not be limited to mid- and near-infrared, ultraviolet/visible, fluorescence and Raman spectroscopies.
1.2.2 The surrogate calibrations covered in this practice are: multilinear regression (MLR), principal components regression (PCR) or partial least squares (PLS) mathematics. These calibration procedures are described in detail in Practices E1655.
1.3 For surrogate test methods, this practice recommends limitations that should be placed on calibration options that are allowed in the test method. Specifically, this practice recommends that the test method developer demonstrate that all calibrations that are allowed in the test method produce statistically indistinguishable results.
1.4 For surrogate test methods that reference spectrometer/spectrophotometer performance practices, such as Practices E275, E387, E388, E579, E925, E932, E958, E1421, E1683, E1866 or E1944, this practice recommends that instrument performance data be collected as part of the ILS to establish the relationship between spectrometer/spectrophotometer performance and test method precision.
ASTM D 6756 : 2017 | Standard Test Method for Determination of the Red Dye Concentration and Estimation of the ASTM Color of Diesel Fuel and Heating Oil Using a Portable Visible Spectrophotometer |
ASTM E 2898 : 2014 | Standard Guide for Risk-Based Validation of Analytical Methods for PAT Applications |
ASTM D 7806 : 2012 | Standard Test Method for Determination of the Fatty Acid Methyl Ester (FAME) Content of a Blend of Biodiesel and Petroleum-Based Diesel Fuel Oil Using Mid-Infrared Spectroscopy |
ASTM D 7371 : 2014 | Standard Test Method for Determination of Biodiesel (Fatty Acid Methyl Esters) Content in Diesel Fuel Oil Using Mid Infrared Spectroscopy (FTIR-ATR-PLS Method) |
ASTM D 6277 : 2007 : R2017 | Standard Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared Spectroscopy |
ASTM D 7058 : 2019 | Standard Test Method for Determination of the Red Dye Concentration and Estimation of Saybolt Color of Aviation Turbine Fuels and Kerosine Using a Portable Visible Spectrophotometer |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.