ASTM D 7664 : 2010 : R2018 : EDT 1
Current
The latest, up-to-date edition.
Standard Test Methods for Measurement of Hydraulic Conductivity of Unsaturated Soils
Hardcopy , PDF
English
01-11-2018
Committee |
D 18
|
DocumentType |
Test Method
|
Pages |
24
|
ProductNote |
Reapproval with changes editorially added in October 2018.
|
PublisherName |
American Society for Testing and Materials
|
Status |
Current
|
Supersedes |
1.1These test methods cover the quantitative measurement of data points suitable for defining the hydraulic conductivity functions (HCF) of unsaturated soils. The HCF is defined as either the relationship between hydraulic conductivity and matric suction or that between hydraulic conductivity and volumetric water content, gravimetric water content, or the degree of saturation. Darcy’s law provides the basis for measurement of points on the HCF, in which the hydraulic conductivity of a soil specimen is equal to the coefficient of proportionality between the flow rate of water through the specimen and the hydraulic gradient across the specimen. To define a point on the HCF, a hydraulic gradient is applied across a soil specimen, the corresponding transient or steady-state water flow rate is measured (or vice versa), and the hydraulic conductivity calculated using Darcy’s law is paired with independent measurements of matric suction or volumetric water content in the soil specimen.
1.2These test methods describe a family of test methods that can be used to define points on the HCF for different types of soils. Unfortunately, there is no single test that can be applied to all soils to measure the HCF due to testing times and the need for stress control. It is the responsibility of the requestor of a test to select the method that is most suitable for a given soil type. Guidance is provided in the significance and use section of these test methods.
1.3Similar to the Soil Water Retention Curve (SWRC), defined as the relationship between volumetric water content and matric suction, the HCF may not be a unique function. Both the SWRC and HCF may follow different paths whether the unsaturated soil is being wetted or dried. A test method should be selected which replicates the flow process occurring in the field.
1.4These test methods describe three categories of methods (Categories A through C) for direct measurement of the HCF. Category A (column tests) involves methods used to define the HCF using measured one-dimensional profiles of volumetric water content or suction with height in a column of soil compacted into a rigid wall permeameter during imposed transient and steady-state water flow processes. Different means of imposing water flow processes are described in separate methods within Category A. Category B (axis translation tests) involves methods used to define the HCF using outflow measurements from a soil specimen underlain by a saturated high-air entry porous disc in a permeameter during imposed transient water flow processes. The uses of rigid-wall or flexible-wall permeameters are described in separate methods within Category B. Category C (centrifuge permeameter test) includes a method to define the HCF using measured volumetric water content or suction profiles in a column of soil confined in a centrifuge permeameter during imposed steady-state water flow processes. The methods in this standard can be used to measure hydraulic conductivity values ranging from the saturated hydraulic conductivity of the soil to approximately 10-11 m/s.
1.5The methods of data analysis described in these test methods involve measurement of the water flow rate and hydraulic gradient, and calculation of the hydraulic conductivity using Darcy’s law (direct methods) (1).2 Alternatively, inverse methods may also be used to define the HCF (2). These employ an iterative, regression-based approach to estimate the hydraulic conductivity that a soil specimen would need to have given a measured water flow response. However, as they require specialized engineering analyses, they are excluded from the scope of these test methods.
1.6These test methods apply to soils that do not change significantly in volume during changes in volumetric water content or suction, or both (that is, expansive clays or collapsing soils). This implies that these methods should be used for sands, silts, and clays of low plasticity.
1.7The methods apply only to soils containing two pore fluids: a gas and a liquid. The liquid is usually water and the gas is usually air. Other fluids may also be used if requested. Caution shall be exercised if the liquid being used causes shrinkage or swelling of the soil.
1.8The units used in reporting shall be SI units in order to be consistent with the literature on water flow analyses in unsaturated soils. The hydraulic conductivity shall be reported in units of [m/s], the matric suction in units of [kPa], the volumetric water content in [m3/m3] or [%], and the degree of saturation in [m3/m3].
1.9All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026. The procedures in Practice D6026 that are used to specify how data are collected, recorded, and calculated are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the objectives of the user. Increasing or reducing the significant digits of reported data to be commensurate with these considerations is common practice. Consideration of the significant digits to be used in analysis methods for engineering design is beyond the scope of these test methods.
1.10This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.11This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ASTM D 5101 : 1999 | Standard Test Method for Measuring the Soil-Geotextile System Clogging Potential by the Gradient Ratio |
ASTM D 653 : 2007 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5084 : 2016 : REV A | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter |
ASTM D 422 : 1963 : R2007 : EDT 1 | Standard Test Method for Particle-Size Analysis of Soils |
ASTM D 3740 : 2023 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 3740 : 2019 | Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 5084 : 2024 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter |
ASTM D 6026 : 2013 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 854 : 2014 | Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023) |
ASTM D 3740 : 1999 : REV C | Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction |
ASTM D 653 : 2024 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6836 : 2016 | Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge |
ASTM D 4318 : 2000 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils |
ASTM D 653 : 2022 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6527 : 2000 | Standard Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady-State Centrifugation |
ASTM D 653 : 2020 : EDT 1 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 5084 : 2016 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter |
ASTM D 653 : 2021 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 2216 : 2019 | Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass |
ASTM D 4318 : 2017 : EDT 1 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils |
ASTM D 6026 : 1996 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 653 : 2021 | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 653 : 2021 : REV B | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 6026 : 1996 : EDT 1 | Standard Practice for Using Significant Digits in Geotechnical Data |
ASTM D 4318 : 2017 | Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils |
ASTM D 5084 : 2000 | Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter |
ASTM D 6026 : 2021 | Standard Practice for Using Significant Digits and Data Records in Geotechnical Data |
ASTM D 5101 : 2023 | Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems |
ASTM D 2216 : 1971 | Standard Method of Laboratory Determination Of Moisture Content Of Soil |
ASTM D 653 : 2024 : REV A | Standard Terminology Relating to Soil, Rock, and Contained Fluids |
ASTM D 854 : 2023 | Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method |
ASTM D 6836 : 2002 | Standard Test Methods for Determination of the Soil Water Chararcteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge |
ASTM D 5101 : 2012 : R2017 | Standard Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems |
ASTM D 1587 : 2000 | Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes |
ASTM D 2487 : 2017 | Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) |
ASTM D 2487 : 1969 : R1975 | Standard Test Method for Classification Of Soils For Engineering Purposes |
Access your standards online with a subscription
Features
-
Simple online access to standards, technical information and regulations.
-
Critical updates of standards and customisable alerts and notifications.
-
Multi-user online standards collection: secure, flexible and cost effective.