• I.S. EN 1994-1-1:2005

    Current The latest, up-to-date edition.

    EUROCODE 4: DESIGN OF COMPOSITE STEEL AND CONCRETE STRUCTURES - PART 1-1: GENERAL RULES AND RULES FOR BUILDINGS (INCLUDING IRISH NATIONAL ANNEX)

    Available format(s):  Hardcopy, PDF

    Language(s):  English

    Published date:  01-01-2005

    Publisher:  National Standards Authority of Ireland

    For Harmonized Standards, check the EU site to confirm that the Standard is cited in the Official Journal.
    Only cited Standards give presumption of conformance to New Approach Directives/Regulations.

    Dates of withdrawal of national standards are available from NSAI.

    Add To Cart

    Table of Contents - (Show below) - (Hide below)

    Foreword
    Section 1 General
      1.1 Scope
          1.1.1 Scope of Eurocode 4
          1.1.2 Scope of Part 1.1 of Eurocode 4
      1.2 Normative references
          1.2.1 General reference standards
          1.2.2 Other reference standards
      1.3 Assumptions
      1.4 Distinction between principles and application rules
      1.5 Definitions
          1.5.1 General
          1.5.2 Additional terms and definitions used in this
                Standard
      1.6 Symbols
    Section 2 Basis of design
      2.1 Requirements
      2.2 Principles of limit state design
      2.3 Basic variables
          2.3.1 Actions and environmental influences
          2.3.2 Material and product properties
          2.3.3 Classification of actions
      2.4 Verification by the partial factor method
          2.4.1 Design values
          2.4.2 Combination of actions
          2.4.3 Verification of static equilibrium (EQU)
    Section 3 Materials
      3.1 Concrete
      3.2 Reinforcing steel
      3.3 Structural steel
      3.4 Connecting devices
          3.4.1 General
          3.4.2 Headed stud shear connectors
      3.5 Profiled steel sheeting for composite slabs in buildings
    Section 4 Durability
      4.1 General
      4.2 Profiled steel sheeting for composite slabs in buildings
    Section 5 Structural analysis
      5.1 Structural modelling for analysis
          5.1.1 Structural modelling and basic assumptions
          5.1.2 Joint modelling
          5.1.3 Ground-structure interaction
      5.2 Structural stability
          5.2.1 Effects of deformed geometry of the structure
          5.2.2 Methods of analysis for buildings
      5.3 Imperfections
          5.3.1 Basis
          5.3.2 Imperfections in buildings
      5.4 Calculation of action effects
          5.4.1 Methods of global analysis
          5.4.2 Linear elastic analysis
          5.4.3 Non-linear global analysis
          5.4.4 Linear elastic analysis with limited redistribution
                for buildings
          5.4.5 Rigid plastic global analysis for buildings
      5.5 Classification of cross-sections
          5.5.1 General
          5.5.2 Classification of composite sections without
                concrete encasement
          5.5.3 Classification of composite sections for buildings
                with concrete encasement
    Section 6 Ultimate limit states
      6.1 Beams
          6.1.1 Beams for buildings
          6.1.2 Effective width for verification of cross-sections
      6.2 Resistances of cross-sections of beams
          6.2.1 Bending resistance
          6.2.2 Resistance to vertical shear
      6.3 Resistance of cross-sections of beams for buildings
          with partial encasement
          6.3.1 Scope
          6.3.2 Bending resistance
          6.3.3 Resistance to vertical shear
          6.3.4 Bending and vertical shear
      6.4 Lateral-torsional buckling of composite beams
          6.4.1 General
          6.4.2 Verification of lateral-torsional buckling of
                continuous composite beams with cross-sections
                in Class 1, 2 and 3 for buildings
          6.4.3 Simplified verification for buildings without
                direct calculation
      6.5 Transverse forces on webs
          6.5.1 General
          6.5.2 Flange-induced buckling of webs
      6.6 Shear connection
          6.6.1 General
          6.6.2 Longitudinal shear force in beams for buildings
          6.6.3 Headed stud connectors in solid slabs and concrete
                encasement
          6.6.4 Design resistance of headed studs used with profiled
                steel sheeting in buildings
          6.6.5 Detailing of the shear connection and influence of
                execution
          6.6.6 Longitudinal shear in concrete slabs
      6.7 Composite columns and composite compression members
          6.7.1 General
          6.7.2 General method of design
          6.7.3 Simplified method of design
          6.7.4 Shear connection and load introduction
          6.7.5 Detailing Provisions
      6.8 Fatigue
          6.8.1 General
          6.8.2 Partial factors for fatigue assessment for buildings
          6.8.3 Fatigue strength
          6.8.4 Internal forces and fatigue loadings
          6.8.5 Stresses
          6.8.6 Stress ranges
          6.8.7 Fatigue assessment based on nominal stress ranges
    Section 7 Serviceability limit states
      7.1 General
      7.2 Stresses
          7.2.1 General
          7.2.2 Stress limitation for buildings
      7.3 Deformations in buildings
          7.3.1 Deflections
          7.3.2 Vibration
      7.4 Cracking of concrete
          7.4.1 General
          7.4.2 Minimum reinforcement
          7.4.3 Control of cracking due to direct loading
    Section 8 Composite joints in frames for buildings
      8.1 Scope
      8.2 Analysis, modelling and classification
          8.2.1 General
          8.2.2 Elastic global analysis
          8.2.3 Classification of joints
      8.3 Design methods
          8.3.1 Basis and scope
          8.3.2 Resistance
          8.3.3 Rotational stiffness
          8.3.4 Rotation capacity
      8.4 Resistance of components
          8.4.1 Scope
          8.4.2 Basic joint components
          8.4.3 Column web in transverse compression
          8.4.4 Reinforced components
    Section 9 Composite slabs with profiled steel sheeting for
              buildings
      9.1 General
          9.1.1 Scope
          9.1.2 Definitions
      9.2 Detailing provisions
          9.2.1 Slab thickness and reinforcement
          9.2.2 Aggregate
          9.2.3 Bearing requirements
      9.3 Actions and action effects
          9.3.1 Design situations
          9.3.2 Actions for profiled steel sheeting as shuttering
          9.3.3 Actions for composite slab
      9.4 Analysis for internal forces and moments
          9.4.1 Profiled steel sheeting as shuttering
          9.4.2 Analysis of composite slab
          9.4.3 Effective width of composite slab for concentrated
                point and line loads
      9.5 Verification of profiled steel sheeting as shuttering
          for ultimate limit states
      9.6 Verification of profiled steel sheeting as shuttering for
          serviceability limit states
      9.7 Verification of composite slabs for ultimate limit states
          9.7.1 Design criterion
          9.7.2 Flexure
          9.7.3 Longitudinal shear for slabs without end anchorage
          9.7.4 Longitudinal shear for slabs with end anchorage
          9.7.5 Vertical shear
          9.7.6 Punching shear
      9.8 Verification of composite slabs for serviceability limit
          states
          9.8.1 Control of cracking of concrete
          9.8.2 Deflection
    Annex A (Informative) Stiffness of joint components in buildings
      A.1 Scope
      A.2 Stiffness coefficients
          A.2.1 Basic joint components
          A.2.2 Other components in composite joints
          A.2.3 Reinforced components
      A.3 Deformation of the shear connection
    Annex B (Informative) Standard tests
      B.1 General
      B.2 Tests on shear connectors
          B.2.1 General
          B.2.2 Testing arrangements
          B.2.3 Preparation of specimens
          B.2.4 Testing procedure
          B.2.5 Test evaluation
      B.3 Testing of composite floor slabs
          B.3.1 General
          B.3.2 Testing arrangement
          B.3.3 Preparation of specimens
          B.3.4 Test loading procedure
          B.3.5 Determination of design values for m and k
          B.3.6 Determination of the design values for tau[u,Rd]
    Annex C (Informative) Shrinkage of concrete for composite
                          structures for buildings
    Annex NA (informative) Irish National Annex to
             Eurocode 4: Design of composite steel
             and concrete structures - Part 1-1: General
             rules and rules for buildings
    Introduction
          NA.1 Scope
          NA.2 Nationally Determined Parameters
          NA.3 Decisions on the status of informative annexes
    Bibliography

    Abstract - (Show below) - (Hide below)

    Applicable to the design of composite structures and members for buildings and civil engineering works.

    General Product Information - (Show below) - (Hide below)

    Development Note Supersedes X.I.S. ENV 1994-1-1. (08/2005) Now includes Irish National Annex 2010 which is also available as a separate document, See I.S. EN 1994-1-1 NATIONAL ANNEX. (03/2010)
    Document Type Standard
    Publisher National Standards Authority of Ireland
    Status Current
    Supersedes

    Standards Referencing This Book - (Show below) - (Hide below)

    ISO 14555:2017 Welding — Arc stud welding of metallic materials
    ISO 13918:2008 Welding Studs and ceramic ferrules for arc stud welding
    EN 10025-4:2004 Hot rolled products of structural steels - Part 4: Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels
    EN 1991-1-6:2005/AC:2013 Eurocode 1 - Actions on structures Part 1-6: General actions - Actions during execution
    EN 1993-1-5:2006/A1:2017 EUROCODE 3 - DESIGN OF STEEL STRUCTURES - PART 1-5: PLATED STRUCTURAL ELEMENTS
    EN 10149-2:2013 Hot rolled flat products made of high yield strength steels for cold forming - Part 2: Technical delivery conditions for thermomechanically rolled steels
    EN 10025-1:2004 Hot rolled products of structural steels - Part 1: General technical delivery conditions
    EN 10326:2004 Continuously hot-dip coated strip and sheet of structural steels - Technical delivery conditions
    EN 1991-1-5:2003/AC:2009 EUROCODE 1: ACTIONS ON STRUCTURES - PART 1-5: GENERAL ACTIONS - THERMAL ACTIONS
    EN 10025-5:2004 Hot rolled products of structural steels - Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance
    EN 10025-2:2004/AC:2005 HOT ROLLED PRODUCTS OF STRUCTURAL STEELS - PART 2: TECHNICAL DELIVERY CONDITIONS FOR NON-ALLOY STRUCTURAL STEELS
    EN 1090-2:2008+A1:2011 EXECUTION OF STEEL STRUCTURES AND ALUMINIUM STRUCTURES - PART 2: TECHNICAL REQUIREMENTS FOR STEEL STRUCTURES
    EN 1993-1-3:2006/AC:2009 EUROCODE 3 - DESIGN OF STEEL STRUCTURES - PART 1-3: GENERAL RULES - SUPPLEMENTARY RULES FOR COLD-FORMED MEMBERS AND SHEETING
    EN 10025-6:2004+A1:2009 Hot rolled products of structural steels - Part 6: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition
    EN 1993-1-9:2005/AC:2009 EUROCODE 3: DESIGN OF STEEL STRUCTURES - PART 1-9: FATIGUE
    EN 1992-1-1:2004/A1:2014 EUROCODE 2: DESIGN OF CONCRETE STRUCTURES - PART 1-1: GENERAL RULES AND RULES FOR BUILDINGS
    EN ISO 14555:2017 Welding - Arc stud welding of metallic materials (ISO 14555:2017)
    EN 1990:2002/A1:2005/AC:2010 EUROCODE - BASIS OF STRUCTURAL DESIGN
    EN 1993-1-8:2005/AC:2009 EUROCODE 3: DESIGN OF STEEL STRUCTURES - PART 1-8: DESIGN OF JOINTS
    EN 10025-3:2004 Hot rolled products of structural steels - Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels
    EN 13670:2009 Execution of concrete structures
    EN 10149-3:2013 Hot rolled flat products made of high yield strength steels for cold forming - Part 3: Technical delivery conditions for normalized or normalized rolled steels
    EN 1993-1-1:2005/A1:2014 EUROCODE 3: DESIGN OF STEEL STRUCTURES - PART 1-1: GENERAL RULES AND RULES FOR BUILDINGS
    • Access your standards online with a subscription

      Features

      • Simple online access to standards, technical information and regulations
      • Critical updates of standards and customisable alerts and notifications
      • Multi - user online standards collection: secure, flexibile and cost effective