This standard applies to all kinds of passive dosimetry systems that are used for measuring the personal dose equivalent H p(10) (for whole body dosimetry), the personal dose equivalent H p(3) (for eye lens dosimetry), the personal dose equivalent H p(0,07) (for both whole body and extremity dosimetry), the ambient dose equivalent H*(10) (for environmental dosimetry), or the directional dose equivalent H’(0,07) (for environmental dosimetry). Text deleted This standard applies to dosimetry systems that measure external photon and/or beta radiation in the dose range between 0,01mSv and 10Sv and in the energy ranges given in Table1. All the energy values are mean energies with respect to the prevailing dose quantity. The dosimetry systems usually use electronic devices for the data evaluation and thus are often computer controlled. Table1 Mandatory and maximum energy ranges covered by this standard Measuring quantity Mandatory energy range for photon radiation Maximum energy range for testing photon radiation Mandatory energy range for beta-particle radiationa Maximum energy range for testing beta-particle radiation a H p(10), H*(10) 80keV to 1,25MeV 12keV to 10MeV — — H p(3) 30keV to 250keV 8keV to 10MeV 0,8MeV almost equivalent to an E max of 2,27MeV 0,7MeV b to 1,2MeV almost equivalent to E max from 2,27MeV to 3,54MeV H p(0,07), H’(0,07) 30keV to 250keV 8keV to 10MeV 0,8MeV almost equivalent to an E max of 2,27MeV 0,06MeV c to 1,2MeV almost equivalent to E max from 0,225MeV to 3,54MeV a The following beta radiation source are suggested for the different mean energies: For 0,06MeV: 147Pm; for 0,8MeV: 90Sr/ 90Y; for 1,2 Mev: 106Ru/ 106Rh. b For beta-particle radiation, an energy of 0,7MeV is required to reach the radiation sensitive layers of the eye lens in a depth of about 3mm (approximately 3mm of ICRU tissue). c For beta-particle radiation, an energy of 0,07MeV is required to penetrate the dead layer of skin of 0,07mm (approximately 0,07mm of ICRU tissue). NOTE2 In this standard, “dose” means dose equivalent, unless otherwise stated. NOTE3 For H p(10) and H*(10) no beta radiation is considered. Reasons: 1) H p(10) and H*(10) are a conservative estimate for the effective dose which is not a suitable quantity for beta radiation. 2) No conversion coefficients are available in ICRU 56, ICRU 57 or ISO6980‑3 . NOTE4 The maximum energy ranges are the energy limits within which type tests according to this standard are possible. The test methods concerning the design ( Clause8), the instruction manual ( Clause9), the software ( Clause10), environmental influences ( Clause13), electromagnetic influences ( Clause14), mechanical influences ( Clause15), and the documentation ( Clause16) are independent of the type of radiation. Therefore, they can also be applied to other dosimetry systems, e.g. for neutrons, utilizing the corresponding type of radiation for testing. This standard is intended to be applied to dosimetry systems that are capable of evaluating doses in the required quantity and unit (Sv) from readout signals in any quantity and unit. The only correction that may be applied to the evaluated dose (indicated value) is the one resulting from natural background radiation using extra dosemeters. NOTE5 The correction due to natural background can be made before or after the dose calculation.