1 - AS 2885.1-2007 PIPELINES-GAS AND LIQUID PETROLEUM - DESIGN AND CONSTRUCTION
4 - PREFACE
8 - CONTENTS
17 - SECTION 1 SCOPE AND GENERAL
17 - 1.1 SCOPE
17 - 1.2 GENERAL
17 - 1.3 RETROSPECTIVE APPLICATION
18 - 1.4 REFERENCED DOCUMENTS
18 - 1.5 DEFINITIONS
18 - 1.5.1 Accessory
18 - 1.5.2 Approved and approval
18 - 1.5.3 As low as reasonably practicable (ALARP)
18 - 1.5.4 Buckle
18 - 1.5.5 Casing
18 - 1.5.6 Collapse
18 - 1.5.7 Competent person
18 - 1.5.8 Common threats
18 - 1.5.9 Component
18 - 1.5.10 Construction
18 - 1.5.11 Control piping
19 - 1.5.12 Critical defect length
19 - 1.5.13 Defect
19 - 1.5.14 Dent
19 - 1.5.15 Failure
19 - 1.5.16 Fitting
19 - 1.5.17 Fluid
19 - 1.5.18 Gas
19 - 1.5.19 Heat
19 - 1.5.20 High consequence area
19 - 1.5.21 High vapour pressure liquid (HVPL)
19 - 1.5.22 Hoop stress
19 - 1.5.23 Hot tap
20 - 1.5.24 Inspector
20 - 1.5.25 Leak test
20 - 1.5.26 Licensee
20 - 1.5.27 Location class
20 - 1.5.28 May
20 - 1.5.29 Mechanical interference-fit joint
20 - 1.5.30 Nominated Standard
20 - 1.5.31 Non-credible threat
20 - 1.5.32 Non-location specific threat
20 - 1.5.33 Petroleum
20 - 1.5.34 Pig
20 - 1.5.35 Pig trap (scraper trap)
20 - 1.5.36 Pipework, mainline
20 - 1.5.37 Pipework, station
21 - 1.5.38 Piping
21 - 1.5.39 Pretested
21 - 1.5.40 Pressure, design
21 - 1.5.41 Pressure, maximum allowable operating (MAOP)
21 - 1.5.42 Pressure, maximum operating (MOP)
21 - 1.5.43 Pressure strength
21 - 1.5.44 Propagating fracture
21 - 1.5.45 Proprietary item
21 - 1.5.46 Protection measures, procedural
21 - 1.5.47 Protection measures, physical
21 - 1.5.48 Regulatory authority
21 - 1.5.49 Rupture
21 - 1.5.50 Safety management study or process
21 - 1.5.51 Shall
21 - 1.5.52 Should
22 - 1.5.53 Sour service
22 - 1.5.54 Specified minimum yield stress (SMYS)
22 - 1.5.55 Strength test
22 - 1.5.56 Telescoped pipeline
22 - 1.5.57 Threat
22 - 1.5.58 Wall thickness, design pressure (tP)
22 - 1.5.59 Wall thickness, required (tW)
22 - 1.5.60 Wall thickness, nominal(tN)
22 - 1.6 SYMBOLS AND UNITS
24 - 1.7 ABBREVIATIONS
26 - SECTION 2 SAFETY
26 - 2.1 BASIS OF SECTION
26 - 2.2 ADMINISTRATIVE REQUIREMENTS
26 - 2.2.1 Approval
27 - 2.2.2 Documentation
27 - 2.2.3 Implementation
27 - 2.2.4 Safety management study validation
27 - 2.2.5 Operational Review
28 - 2.3 SAFETY MANAGEMENT PROCESS
28 - 2.3.1 General
29 - 2.3.2 Threats
31 - 2.3.3 Controls
32 - 2.3.4 Failure analysis
33 - 2.3.5 Risk assessment
33 - 2.3.6 Demonstration of fault tolerance
33 - 2.4 STATIONS, PIPELINE FACILITIES AND PIPELINE CONTROL SYSTEMS
33 - 2.4.1 General
33 - 2.4.2 Safety assessments
34 - 2.5 ENVIRONMENTAL MANAGEMENT
34 - 2.6 ELECTRICAL
35 - 2.7 CONSTRUCTION AND COMMISSIONING
35 - 2.7.1 Construction safety
36 - 2.7.2 Testing safety
36 - 2.7.3 Commissioning safety
37 - SECTION 3 MATERIALS AND COMPONENTS
37 - 3.1 BASIS OF SECTION
37 - 3.2 QUALIFICATION OF MATERIALS AND COMPONENTS
37 - 3.2.1 General
37 - 3.2.2 Materials and components complying with nominated Standards
38 - 3.2.3 Materials and components complying with Standards not nominated in this Standard
39 - 3.2.4 Components, other than pipe, for which no Standard exists
39 - 3.2.5 Reclaimed pipe
39 - 3.2.6 Reclaimed accessories, valves and fittings
40 - 3.2.7 Identification of components
40 - 3.2.8 Material and components not fully identified
40 - 3.2.9 Unidentified materials and components
40 - 3.2.10 Hydrostatic test
40 - 3.3 REQUIREMENTS FOR COMPONENTS TO BE WELDED
40 - 3.3.1 Welding of prequalified materials
40 - 3.3.2 Materials specifications
40 - 3.4 ADDITIONAL MECHANICAL PROPERTY REQUIREMENTS
40 - 3.4.1 Yield strength
40 - 3.4.2 Pipe Yield to Tensile Ratio
41 - 3.4.3 Strength de-rating
41 - 3.4.4 Fracture toughness
41 - 3.5 REQUIREMENTS FOR TEMPERATURE°AFFECTED ITEMS
41 - 3.5.1 General
42 - 3.5.2 Items heated subsequent to manufacture
42 - 3.5.3 Pipe operated at elevated temperatures
42 - 3.5.4 Pipe exposed to cryogenic temperatures
42 - 3.6 MATERIALS TRACEABILITY AND RECORDS
42 - 3.7 RECORDS
43 - SECTION 4 DESIGN-GENERAL
43 - 4.1 BASIS OF SECTION
44 - 4.2 ROUTE
44 - 4.2.1 General
44 - 4.2.2 Investigation
45 - 4.2.3 Route selection
45 - 4.2.4 Route identification
46 - 4.3 CLASSIFICATION OF LOCATIONS
46 - 4.3.1 General
46 - 4.3.2 Measurement length
46 - 4.3.3 Location classification
46 - 4.3.4 Primary location class
47 - 4.3.5 Secondary location class
48 - 4.4 PIPELINE MARKING
48 - 4.4.1 General
49 - 4.4.2 Sign location
50 - 4.4.3 Sign design
51 - 4.5 SYSTEM DESIGN
51 - 4.5.1 Design Basis
52 - 4.5.2 Maximum velocity
52 - 4.5.3 Design life
53 - 4.5.4 Maximum allowable operating pressure (MAOP)
54 - 4.5.5 Minimum strength test pressure
54 - 4.6 ISOLATION
54 - 4.6.1 General
55 - 4.6.2 Isolation plan
55 - 4.6.3 Review of isolation plan
55 - 4.6.4 Isolation valves
56 - 4.7 SPECIAL PROVISIONS FOR HIGH CONSEQUENCE AREAS
56 - 4.7.1 General
57 - 4.7.2 No rupture
57 - 4.7.3 Maximum discharge rate
57 - 4.7.4 Change of location class
58 - 4.8 FRACTURE CONTROL
58 - 4.8.1 General
59 - 4.8.2 Fracture control plan
62 - 4.8.3 Specification of toughness properties for brittle fracture control
62 - 4.8.4 Specification of toughness properties for tearing fracture control
65 - 4.8.5 Critical defect length
66 - 4.9 LOW TEMPERATURE EXCURSIONS
66 - 4.10 ENERGY DISCHARGE RATE
67 - 4.11 RESISTANCE TO PENETRATION
67 - 4.11.1 General
67 - 4.11.2 Penetration resistance requirements
68 - 4.11.3 Calculation of resistance to penetration
69 - SECTION 5 PIPELINE DESIGN
69 - 5.1 BASIS OF SECTION
69 - 5.2 DESIGN PRESSURE
69 - 5.2.1 Internal pressure
69 - 5.2.2 External pressure
70 - 5.3 DESIGN TEMPERATURES
70 - 5.4 WALL THICKNESS
70 - 5.4.1 Nominal wall thickness (tN)
71 - 5.4.2 Required wall thickness (tW)
71 - 5.4.3 Wall thickness for design internal pressure (tP)
72 - 5.4.4 Wall thickness for design internal pressure of bends
72 - 5.4.5 Wall thickness design for external pressure
73 - 5.4.6 Allowances (G)
73 - 5.4.7 Pipe manufacturing tolerance (H)
73 - 5.4.8 Wall thickness summary
75 - 5.5 EXTERNAL INTERFERENCE PROTECTION
75 - 5.5.1 General
75 - 5.5.2 Depth of cover
76 - 5.5.3 Depth of cover-Rock trench
77 - 5.5.4 Design for protection-General requirements
78 - 5.5.5 Physical controls
79 - 5.5.6 Procedural controls
81 - 5.5.7 Other protection
81 - 5.6 PREQUALIFIED PIPELINE DESIGN
81 - 5.6.1 Minimum requirements
81 - 5.6.2 Prequalified design coverage
82 - 5.6.3 Prequalified design does not apply
82 - 5.6.4 Prequalified design not permitted
82 - 5.6.5 Prequalified design special cases
83 - 5.7 STRESS AND STRAIN
83 - 5.7.1 General
83 - 5.7.2 Terminology
84 - 5.7.3 Stresses due to normal loads
86 - 5.7.4 Stresses due to occasional loads
86 - 5.7.5 Stresses due to construction
86 - 5.7.6 Hydrostatic pressure testing
87 - 5.7.7 Fatigue
87 - 5.7.8 Summary of stress limits
87 - 5.7.9 Plastic strain and limit state design methodologies
88 - 5.8 SPECIAL CONSTRUCTION
88 - 5.8.1 General
89 - 5.8.2 Above°ground piping
89 - 5.8.3 Pipeline with reduced cover or above ground
92 - 5.8.4 Tunnels and shafts
92 - 5.8.5 Directionally drilled crossings
92 - 5.8.6 Submerged crossings
93 - 5.8.7 Pipeline attached to a bridge
94 - 5.8.8 Road and railway reserves
97 - 5.9 PIPELINES ASSEMBLIES
97 - 5.9.1 General
97 - 5.9.2 Scraper assemblies
97 - 5.9.3 Mainline valve assembly
97 - 5.9.4 Isolating valve assembly
97 - 5.9.5 Branch connection assembly
98 - 5.9.6 Attachment of pads, lugs and other welded connections
98 - 5.9.7 Special fabricated assemblies
99 - 5.10 JOINTING
99 - 5.10.1 General
99 - 5.10.2 Welded joints
99 - 5.10.3 Flanged joints
100 - 5.10.4 Threaded fittings
100 - 5.10.5 Other types
100 - 5.11 SUPPORTS AND ANCHORS
100 - 5.11.1 General
101 - 5.11.2 Settlement, scour, and erosion
101 - 5.11.3 Design
101 - 5.11.4 Forces on an above-ground pipeline
101 - 5.11.5 Attachment of anchors, supports, and clamps
101 - 5.11.6 Restraint due to soil friction
102 - 5.11.7 Anchorage at a connection
102 - 5.11.8 Support of branch connections
103 - SECTION 6 STATION DESIGN
103 - 6.1 BASIS OF SECTION
103 - 6.2 DESIGN
103 - 6.2.1 Location
104 - 6.2.2 Layout
104 - 6.2.3 Other considerations
104 - 6.2.4 Safety
107 - 6.3 STATION PIPEWORK
107 - 6.3.1 Design standard
107 - 6.3.2 Pipework subject to vibration
107 - 6.4 STATION EQUIPMENT
107 - 6.4.1 General
108 - 6.4.2 Pressure vessels
108 - 6.4.3 Proprietary equipment
108 - 6.4.4 Equipment isolation
108 - 6.4.5 Station valves
109 - 6.5 STRUCTURES
109 - 6.5.1 General
109 - 6.5.2 Buildings
109 - 6.5.3 Below°ground structures
110 - 6.5.4 Corrosion protection
110 - 6.5.5 Electrical installations
110 - 6.5.6 Drainage
112 - SECTION 7 INSTRUMENTATION AND CONTROL DESIGN
112 - 7.1 BASIS OF SECTION
112 - 7.2 CONTROL AND MANAGEMENT OF PIPELINE SYSTEM
112 - 7.2.1 Pipeline pressure control
114 - 7.2.2 Separation of pipeline sections with different MAOP
114 - 7.2.3 Pipeline facility control
114 - 7.3 FLUID PROPERTY LIMITS
114 - 7.4 SCADA-SUPERVISORY CONTROL AND DATA ACQUISITIONS SYSTEM
115 - 7.5 COMMUNICATION
115 - 7.6 CONTROL FACILITIES
116 - SECTION 8 MITIGATION OF CORROSION
116 - 8.1 BASIS OF SECTION
116 - 8.2 PERSONNEL
116 - 8.3 RATE OF DEGRADATION
116 - 8.3.1 Assessment
117 - 8.3.2 Internal corrosion
117 - 8.3.3 External corrosion
117 - 8.3.4 Environmentally assisted cracking
117 - 8.3.5 Microbiologically induced corrosion (MIC)
117 - 8.4 CORROSION MITIGATION METHODS
117 - 8.4.1 General
117 - 8.4.2 Corrosion mitigation methods
118 - 8.5 CORROSION ALLOWANCE
118 - 8.6 CORROSION MONITORING
119 - 8.7 INTERNAL CORROSION MITIGATION METHODS
119 - 8.7.1 General
119 - 8.7.2 Internal lining
119 - 8.7.3 Corrosion inhibitors and biocides
120 - 8.7.4 Corrosion°resistant materials
120 - 8.8 EXTERNAL CORROSION MITIGATION METHODS
120 - 8.8.1 General
120 - 8.8.2 Coating
121 - 8.8.3 Cathodic protection
121 - 8.8.4 Design considerations
122 - 8.8.5 Measurement of potential
123 - 8.8.6 Electrical earthing
123 - 8.9 EXTERNAL ANTI-CORROSION COATING
123 - 8.9.1 Coating system
123 - 8.9.2 Coating selection
123 - 8.9.3 Coating application
124 - 8.9.4 Joint and coating repair
124 - 8.10 INTERNAL LINING
124 - 8.10.1 Pipeline lining
124 - 8.10.2 Joint and lining repair
125 - SECTION 9 UPGRADE OF MAOP
125 - 9.1 BASIS OF SECTION
125 - 9.2 MAOP UPGRADE PROCESS
125 - 9.2.1 Process stages
125 - 9.2.2 Upgrade Design Basis
126 - 9.2.3 Data collection
127 - 9.2.4 Engineering analysis
129 - 9.2.5 Safety management study
129 - 9.2.6 Rectification
129 - 9.2.7 Revised MAOP
129 - 9.2.8 Approval
129 - 9.2.9 Commissioning and testing
129 - 9.2.10 Records
130 - SECTION 10 CONSTRUCTION
130 - 10.1 BASIS OF SECTION
130 - 10.2 SURVEY
130 - 10.2.1 General
130 - 10.2.2 Survey accuracy
130 - 10.2.3 Horizontal directional drilled installation
131 - 10.2.4 Records
131 - 10.3 HANDLING OF PIPE AND COMPONENTS
131 - 10.3.1 General
131 - 10.3.2 Pipe transport
131 - 10.3.3 Construction loads
132 - 10.4 INSPECTION OF PIPE AND COMPONENTS
132 - 10.4.1 General
132 - 10.4.2 Ovality
132 - 10.4.3 Buckles
132 - 10.4.4 Dents
132 - 10.4.5 Gouges, grooves and notches
132 - 10.4.6 Repair of defects
133 - 10.4.7 Laminations and notches
133 - 10.5 CHANGES IN DIRECTION
133 - 10.5.1 Accepted methods for changes in direction
133 - 10.5.2 Internal access
133 - 10.5.3 Changing direction at a butt weld
133 - 10.5.4 Bend fabricated from a forged bend or an elbow
133 - 10.5.5 Roped bends
133 - 10.6 COLD-FIELD BENDS
133 - 10.6.1 General
134 - 10.6.2 Qualification of cold-field bending procedure
134 - 10.6.3 Acceptance limits for field bends
135 - 10.7 FLANGED JOINTS
135 - 10.8 WELDED JOINTS
135 - 10.9 COVERING SLABS, BOX CULVERTS, CASINGS AND TUNNELS
135 - 10.10 SYSTEM CONTROLS
136 - 10.11 ATTACHMENT OF ELECTRICAL CONDUCTORS
136 - 10.11.1 General
136 - 10.11.2 Aluminothermic welding
137 - 10.12 LOCATION
137 - 10.12.1 Position
137 - 10.12.2 Clearances
137 - 10.13 CLEARING AND GRADING
137 - 10.14 TRENCH CONSTRUCTION
137 - 10.14.1 Safety
138 - 10.14.2 Separation of topsoil
138 - 10.14.3 Dimensions of trenches
138 - 10.14.4 Bottoms of trenches
138 - 10.14.5 Scour
138 - 10.15 INSTALLATION OF A PIPE IN A TRENCH
138 - 10.15.1 General
138 - 10.15.2 Installation requirement
139 - 10.15.3 Development of specifications and procedures
139 - 10.16 PLOUGHING-IN AND DIRECTIONALLY DRILLED PIPELINES
139 - 10.16.1 General
140 - 10.16.2 Testing of coating integrity within directionally drilled installations
140 - 10.17 SUBMERGED CROSSINGS
140 - 10.18 REINSTATEMENT
140 - 10.19 TESTING OF COATING INTEGRITY OF BURIED PIPELINES
141 - 10.20 CLEANING AND GAUGING PIPELINES
142 - SECTION 11 INSPECTIONS AND TESTING
142 - 11.1 BASIS OF SECTION
142 - 11.2 INSPECTION AND TEST PLAN AND PROCEDURES
142 - 11.3 PERSONNEL
142 - 11.4 PRESSURE TESTING
142 - 11.4.1 Application
142 - 11.4.2 Exemptions from a field pressure test
142 - 11.4.3 Pre-tested pipe
143 - 11.4.4 Test procedure
143 - 11.4.5 Strength test pressures
143 - 11.4.6 Testing with air or gas
144 - 11.4.7 Pressure°testing loads
145 - 11.4.8 Acceptance criteria
145 - 11.5 COMMENCEMENT OF PATROLLING
146 - SECTION 12 DOCUMENTATION
146 - 12.1 RECORDS
147 - 12.2 RETENTION OF RECORDS
148 - APPENDIX A - REFERENCED DOCUMENTS
148 - A1 IDENTIFICATION OF DOCUMENTS
148 - A2 REFERENCED DOCUMENTS
153 - APPENDIX B - SAFETY MANAGEMENT PROCESS
153 - B1 GENERAL
154 - B2 WHOLE OF LIFE PIPELINE SAFETY MANAGEMENT
156 - B2.1 Project phases
157 - B3 Pre-requisites for safety management studies
159 - APPENDIX C - THREAT IDENTIFICATION
159 - C1 GENERAL
159 - C2 DESCRIPTION OF THREATS
159 - C2.1 External interference
160 - C2.2 Corrosion
160 - C2.3 Natural events
160 - C2.4 Operations and maintenance
161 - C2.5 Design defects
161 - C2.6 Material defects
161 - C2.7 Construction defects
162 - C2.8 Intentional damage
162 - C2.9 Other threats
163 - APPENDIX D - DESIGN CONSIDERATIONS FOR EXTERNAL INTERFERENCE PROTECTION
163 - D1 INTRODUCTION
163 - D2 DEFINITION OF DESIGN EVENTS
164 - D3 EXTERNAL INTERFERENCE PROTECTION DESIGN
166 - APPENDIX E - EFFECTIVENESS OF PROCEDURAL CONTROLS FOR THE PREVENTION OF EXTERNAL INTERFERENCE DAMAGE TO PIPELINES
166 - E1 GENERAL
167 - E2 EFFECTIVENESS OF PROCEDURAL CONTROLS
167 - E3 CAUSES OF FAILURE OF PROCEDURAL CONTROLS
168 - E4 LIAISON
168 - E4.1 Landowner liaison
168 - E4.2 Third°party liaison
169 - E5 COMMUNITY AWARENESS PROGRAMS
169 - E6 ONE-CALL SERVICES
170 - E7 MARKING
170 - E7.1 Pipeline markers
171 - E7.2 BURIED MARKER TAPE
171 - E8 AGREEMENTS WITH OTHER ENTITIES
172 - E9 PLANNING NOTIFICATION ZONES
172 - E10 PATROLLING
172 - E11 REMOTE INSTRUSION MONITORING
173 - APPENDIX F - QUALITATIVE RISK ASSESSMENT
173 - F1 GENERAL
173 - F2 CONSEQUENCE ANALYSIS
174 - F3 FREQUENCY ANALYSIS
174 - F4 RISK RANKING
175 - F5 RISK TREATMENT
175 - F5.1 General
175 - F5.2 ALARP
176 - F5.3 Risk treatment during design
176 - F5.4 Risk treatment during operation
177 - APPENDIX G - ALARP
177 - G1 GENERAL
177 - G2 THE CONCEPT OF ALARP
178 - G3 CONSIDERATION OF ALTERNATIVES
179 - APPENDIX H - INTEGRITY OF THE SAFETY MANAGEMENT PROCESS
179 - H1 INTRODUCTION
179 - H2 INTEGRITY REVIEW CONCEPTS
179 - H2.1 Approval
179 - H2.2 Specific information for specific threats
179 - H2.3 Effective controls
180 - H2.4 Positive confirmation
180 - H3 INTEGRITY CHECKING
180 - H3.1 General
180 - H3.2 Methodology
180 - H3.3 Personnel
181 - H3.4 Data and documentation
187 - APPENDIX I - ENVIRONMENTAL MANAGEMENT
187 - I1 GENERAL
188 - I2 ENVIRONMENTAL MANAGEMENT PROCESS
189 - APPENDIX J - PREFERRED METHOD FOR TENSILE TESTING OF WELDED LINE PIPE DURING MANUFACTURE
189 - J1 APPLICABILITY
189 - J2 METHOD FOR DETERMINING TENSILE PROPERTIES
189 - J3 CRITERIA OF ACCEPTANCE
190 - APPENDIX K - FRACTURE TOUGHNESS TEST METHODS
190 - K1 SCOPE
190 - K2 SAMPLING
190 - K3 FRACTURE APPEARANCE TESTING FOR CONTROL OF BRITTLE FRACTURE
190 - K3.1 General
190 - K3.2 Test specimens
190 - K3.3 Test temperature
190 - K3.4 Criteria of acceptance
191 - K4 ENERGY ABSORPTION TESTING FOR CONTROL OF LOW ENERGY TEARING DUCTILE FRACTURE
191 - K4.1 General
191 - K4.2 Test specimens
191 - K4.3 Test temperature
191 - K4.4 Criteria of acceptance
192 - APPENDIX L - FRACTURE CONTROL PLAN FOR STEEL PIPELINES
192 - L1 GENERAL
192 - L2 THE BASIS OF FRACTURE CONTROL
193 - L3 FACTORS AFFECTING BRITTLE AND TEARING DUCTILE FRACTURE
193 - L3.1 General
193 - L3.2 Fluid parameters
194 - L3.3 Operating parameters
196 - L3.4 Diameter limits
196 - L3.5 Calculation of Charpy energy requirements for the arrest of ductile tearing fracture
196 - L4 GUIDANCE ON TEST TEMPERATURE SPECIFICATION
199 - L5 OTHER CONSIDERATIONS
199 - L5.1 Smaller diameter-High pressure pipe
200 - L5.2 Decompression behaviour and rich and multi-phase gases
200 - L6 REFERENCES
202 - APPENDIX M - CALCULATION OF RESISTANCE TO PENETRATION
202 - M1 GENERAL
202 - M2 CALCULATIONS
202 - M3 TOOTH AND HOLE DIMENSIONS
204 - M4 TOOL FORCE
204 - M5 FACTOR B
206 - M6 AUSTRALIAN FIELD TRIALS
207 - APPENDIX N - FATIGUE
207 - N1 GENERAL
207 - N2 MATERIALS
207 - N3 DESIGN
207 - N3.1 General
208 - N3.2 Definition of fatigue life
209 - N3.3 Definition of stress cycles
209 - N3.4 Revalidation
210 - APPENDIX O - FACTORS AFFECTING CORROSION
210 - O1 GENERAL
210 - O2 INTERNAL CORROSION
210 - O3 EXTERNAL CORROSION
211 - O4 ENVIRONMENTALLY ASSISTED CRACKING
211 - O5 CORROSION PRIOR TO COMMISSIONING
213 - APPENDIX P - ENVIRONMENT°RELATED CRACKING
213 - P1 GENERAL
213 - P2 HIGH pH (CLASSICAL) STRESS CORROSION CRACKING
213 - P2.1 Description
213 - P2.2 Conditions
214 - P3 LOW pH (NEAR NEUTRAL) STRESS CORROSION CRACKING
214 - P3.1 Description
214 - P3.2 Conditions
215 - P4 HYDROGEN SULFIDE CRACKING
215 - P4.1 General
215 - P4.2 Hydrogen°induced cracking (HIC)
215 - P4.3 Sulfide stress corrosion cracking (SSCC)
216 - P5 HYDROGEN°ASSISTED COLD CRACKING (HACC)
216 - P6 DESIGN CONSIDERATIONS TO MITIGATE STRESS°CORROSION CRACKING
216 - P6.1 General
217 - P6.2 Stress
217 - P6.3 Cyclic variation of stress
217 - P6.4 Pipeline anti-corrosion coating
217 - P6.5 Age of pipeline
218 - P6.6 Soil environment
218 - P6.7 Surface preparation
218 - P6.8 Cathodic protection system
218 - P6.9 Pipe wall temperature
219 - P7 REFERENCES
220 - APPENDIX Q - INFORMATION FOR CATHODIC PROTECTION
222 - APPENDIX R - MITIGATION OF EFFECTS FROM HIGH VOLTAGE ELECTRICAL POWERLINES
222 - R1 GENERAL
222 - R1.1 Powerline effects
222 - R1.2 High voltage direct current transmission lines
222 - R1.3 Mitigative measures
223 - R2 NATURE OF ELECTRICAL HAZARDS
223 - R2.1 General
223 - R2.2 Physical damage to the structure or its coating.
223 - R2.3 Risk to personnel who may be in contact with or close proximity to the structure
223 - R2.4 Cathodic protection
223 - R3 HAZARD MECHANISMS
223 - R3.1 General
224 - R3.2 Low frequency induction under operating conditions
224 - R3.3 Low frequency induction under fault conditions
224 - R3.4 Earth potential rise
225 - R3.5 Capacitive coupling
225 - R3.6 Conductive coupling
225 - R3.7 Lightning
226 - R4 ACCEPTABLE VOLTAGE LIMITS
226 - R4.1 General
226 - R4.2 Category A (see AS/NZS 4853)
226 - R4.3 Category B (see AS/NZS 4853)
227 - R4.4 Voltage limits during construction or maintenance activities.
227 - R4.5 Voltage limits on buried sections of pipeline.
227 - R5 ASSESSMENT OF HAZARD
228 - R6 PROTECTIVE MEASURES
228 - R7 PERSONNEL SAFETY DURING PIPELINE OPERATION AND MAINTENANCE
228 - R7.1 General
228 - R7.2 Operational activities
229 - R7.3 Pipe excavation
229 - R7.4 Equipotential mats
229 - R7.5 Protective equipment
229 - R7.6 Pipe continuity
230 - APPENDIX S - PROCEDURE QUALIFICATION FOR COLD FIELD BENDS
230 - S1 INTRODUCTION
230 - S2 BASIS OF REQUIREMENTS FOR COLD FIELD BENDS
231 - S3 OBJECTIVES
233 - S4 SUGGESTED METHOD
235 - APPENDIX T - GUIDELINES FOR THE TENSIONING OF BOLTS IN THE FLANGED JOINTS OF PIPING SYSEMS
235 - T1 INTRODUCTION
235 - T2 NOTATION
238 - T3 THE EFFECT OF THE GASKET ON THE LOAD CARRIED
238 - T4 STRENGTH CAPACITY OF A BOLT
238 - T5 INITIAL LOAD AND PRELOAD
239 - T6 RELATIONSHIP BETWEEN APPLIED TORQUE AND TENSION
240 - T7 LOADS IMPOSED ON A BOLT
240 - T8 COMBINED STRESSES
240 - T8.1 Stresses during installation
241 - T8.2 Stresses during operation
241 - T8.3 Stresses during the hydrostatic pressure test
242 - T9 FATIGUE FROM OPERATING LOADS
242 - T10 THE EFFECTS OF PIPING LOADS ON FLANGED JOINTS
243 - T11 COEFFICIENT OF FRICTION
243 - T12 COMPONENTS OF THE FLANGE ASSEMBLY
243 - T13 DERATING OF ALLOWABLE STRESS AT ELEVATED TEMPERATURE
244 - T14 ALLOWABLE STRESS LIMITS
244 - T15 WORKED EXAMPLE
244 - T15.1 Details for the worked example
244 - T15.2 Gasket compression and test pressure
245 - T15.3 Operating loads
245 - T15.4 The applied load (Q)
246 - T15.5 The applied torque (T)
246 - T15.6 Combined stress level in the bolts during installation
247 - T15.7 Stress level in the bolts during the hydrostatic pressure test
247 - T15.8 Sustained stress level in the bolts during operation
247 - T15.9 Fatigue stress level during operation
249 - T16 VALIDATION OF THE TORQUE WRENCH TIGHTENING PROCEDURE
251 - APPENDIX U - STRESS TYPES AND DEFINITIONS
251 - U1 GENERAL
251 - U2 STRESSES IN RESTRAINED PIPELINES
251 - ¿U2.1 Hoop or circumferential pressure stress (¿H)
252 - ¿U2.2 Longitudinal pressure stress (¿L)
252 - U2.3 Longitudinal thermal expansion stress
252 - ¿U2.4 Bending stress ¿W
253 - ¿U2.5 Direct axial stresses ¿F and ¿other
253 - ¿U2.6 Sustained stress (¿sus)
253 - ¿U2.7 Total longitudinal stress (¿T)
253 - U2.8 Total shear stress ()
254 - ¿U2.9 Combined equivalent stress (¿c)
254 - U3 STRESSES IN UNRESTRAINED PIPELINES
254 - ¿U3.1 Hoop or circumferential pressure stress (¿H)
254 - ¿U3.2 Longitudinal pressure stress (¿L)
255 - ¿U3.3 Thermal expansion stress (¿E)
255 - ¿U3.4 Bending stress (¿w)
256 - ¿U3.5 Direct axial stresses ¿F and ¿other
256 - ¿U3.6 Sustained stress (¿sus)
256 - U3.7 Total shear stress ()
256 - U4 STRESSES IN ALL PIPELINE APPLICATIONS
256 - ¿U4.1 Occasional stress (¿o)
258 - APPENDIX V - EXTERNAL LOADS
258 - V1 GENERAL
258 - V2 API RPI 1102
258 - V3 LOAD SITUATIONS
259 - V4 VEHICLE LOADS
259 - V5 EQUIVALENT API RP 1102 LOADS
260 - V6 OTHER DESIGN METHODS
262 - APPENDIX W - COMBINED EQUIVALENT STRESS
262 - W1 INTRODUCTION
262 - W2 DESIGN LIMITS
263 - W3 DISCUSSION OF DESIGN FACTOR, STRESS AND TEMPERATURE
263 - W4 DESIGN ENVELOPES
264 - W5 DERIVATION OF STRESS AND TEMPERATURE VALUES
264 - W5.1 The von Mises formula
266 - W5.2 Tresca formulae
272 - APPENDIX X - PIPE STRESS ANALYSIS
272 - X1 GENERAL
272 - X2 FAILURE MODES AND CRITERIA
273 - X3 RESTRAINED AND UNRESTRAINED PIPE
273 - X4 SUSTAINED AND SELF-LIMITING LOADS
274 - X5 THEORIES OF FAILURE (TRESCA AND VON MISES)
275 - X6 YIELDING
275 - X7 COMPUTATION OF STRESSES
277 - APPENDIX Y - RADIATION CONTOUR
277 - Y1 GENERAL
277 - Y2 FULL BORE RUPTURE OF GAS PIPELINE
280 - Y3 LEAK FROM GAS PIPELINE
281 - Y4 LIQUID HYDROCARBON PIPELINES
282 - APPENDIX Z - REINFORCEMENT OF WELDED BRANCH CONNECTIONS
282 - Z1 SCOPE
282 - Z2 REINFORCEMENT OF SINGLE WELDED BRANCH CONNECTIONS
283 - Z3 Reinforcement of multiple openings
283 - Z3.1 Overlapping of effective reinforcement areas
283 - Z3.2 Minimum distance between adjacent openings
283 - Z3.3 Closely spaced openings
283 - Z4 EXTRUDED OUTLET
288 - APPENDIX AA - FIBREGLASS PIPE-MANUFACTURE, DESIGN AND CONSTRUCTION CONSIDERATIONS
288 - AA1 INTRODUCTION
288 - AA2 PIPE PROPERTIES
288 - AA2.1 Physical properties
289 - AA2.2 Damage
290 - AA2.3 Failure modes
290 - AA3 PIPE SPECIFICATION
290 - AA3.1 Pressure definition
291 - AA3.2 Process conditions
291 - AA3.3 Hydrostatic test conditions
292 - AA3.4 Bends
292 - AA3.5 Pressure design
292 - AA3.6 Joint selection
293 - AA4 PIPE MANUFACTURE
293 - AA4.1 ISO 14692/API 15HR/API 15LR/Other
293 - AA4.2 Shop testing
293 - AA4.3 Quality records
294 - AA5 PIPELINE DESIGN
294 - AA5.1 General
294 - AA5.2 Physical properties of the pipe required for design and analysis
295 - AA5.3 Structural design
295 - AA5.4 Transient loads
295 - AA5.5 Load combinations
295 - AA5.6 Design tools
296 - AA5.7 Burial and crossing design
296 - AA5.8 Environmental loads
296 - AA5.9 External interference risk
296 - AA5.10 Static electricity
296 - AA5.11 Fire
296 - AA5.12 Hazardous area classification
296 - AA6 PIPELINE CONSTRUCTION
296 - AA6.1 General
296 - AA6.2 Competence and training
297 - AA6.3 Receipt, storage and handling
297 - AA6.4 Installation
297 - AA6.5 Supervision and inspection
298 - AA6.6 Quality records
298 - AA6.7 Hydrostatic testing
298 - AA6.8 Pigging and gauging
298 - AA7 MAINTENANCE
298 - AA7.1 Repair methods